Remote sensing of water depths in shallow waters via artificial neural networks

水深测量 遥感 先进星载热发射反射辐射计 地质学 水深图 人工神经网络 波浪和浅水 环境科学 数字高程模型 计算机科学 海洋学 人工智能
作者
Ceyhun Özçelik,Arısoy Yalçın
出处
期刊:Estuarine Coastal and Shelf Science [Elsevier]
卷期号:89 (1): 89-96 被引量:98
标识
DOI:10.1016/j.ecss.2010.05.015
摘要

Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助葛辉辉采纳,获得10
刚刚
龙泉完成签到 ,获得积分10
刚刚
Khr1stINK发布了新的文献求助20
刚刚
美女发布了新的文献求助10
刚刚
汉堡包应助烫嘴普通话采纳,获得10
刚刚
长颈鹿完成签到,获得积分10
2秒前
Koi完成签到,获得积分10
2秒前
打卤完成签到,获得积分10
2秒前
CodeCraft应助Intro采纳,获得10
3秒前
SciGPT应助cat采纳,获得10
3秒前
Minkslion发布了新的文献求助10
3秒前
4秒前
酷波er应助细腻的麦片采纳,获得10
5秒前
lurenjia009完成签到,获得积分10
6秒前
6秒前
科研通AI5应助huangyi采纳,获得10
7秒前
yxy完成签到,获得积分10
7秒前
Orange应助yam001采纳,获得30
7秒前
7秒前
竹斟酒完成签到,获得积分10
8秒前
8秒前
8秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
8秒前
8秒前
8秒前
深情安青应助美女采纳,获得10
9秒前
111完成签到,获得积分10
9秒前
葛辉辉完成签到,获得积分10
10秒前
kangkang发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
SciGPT应助ye采纳,获得10
12秒前
乐乐应助自信晟睿采纳,获得10
12秒前
葛辉辉发布了新的文献求助10
12秒前
13秒前
Wxd0211完成签到,获得积分20
13秒前
nemo完成签到,获得积分10
14秒前
小橙子发布了新的文献求助10
14秒前
lxh2424发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762