Remote sensing of water depths in shallow waters via artificial neural networks

水深测量 遥感 先进星载热发射反射辐射计 地质学 水深图 人工神经网络 波浪和浅水 环境科学 数字高程模型 计算机科学 海洋学 人工智能
作者
Ceyhun Özçelik,Arısoy Yalçın
出处
期刊:Estuarine Coastal and Shelf Science [Elsevier]
卷期号:89 (1): 89-96 被引量:98
标识
DOI:10.1016/j.ecss.2010.05.015
摘要

Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛彬洁发布了新的文献求助10
刚刚
wills应助科研通管家采纳,获得10
刚刚
虞无声应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得20
刚刚
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
杨华启发布了新的文献求助10
刚刚
xt完成签到,获得积分10
刚刚
刚刚
Owen应助miao采纳,获得10
刚刚
领导范儿应助Shawn采纳,获得10
刚刚
刚刚
杨19980625发布了新的文献求助10
1秒前
动听饼干完成签到 ,获得积分20
1秒前
爱蜜莉亚QAQ完成签到,获得积分10
1秒前
可可完成签到,获得积分10
1秒前
1秒前
快乐小子发布了新的文献求助10
1秒前
田様应助77采纳,获得10
1秒前
CC完成签到,获得积分10
2秒前
NexusExplorer应助扬子采纳,获得30
2秒前
Stella应助无奈的若风采纳,获得10
2秒前
长孙半芹发布了新的文献求助200
2秒前
纯真的尔岚完成签到,获得积分10
3秒前
烟花应助li采纳,获得10
3秒前
3秒前
孟寐以求发布了新的文献求助20
3秒前
3秒前
3秒前
denly应助王东旭采纳,获得10
4秒前
yiyi发布了新的文献求助10
4秒前
Jjj完成签到,获得积分10
4秒前
碧蓝的安露完成签到 ,获得积分10
4秒前
大个应助辐睿采纳,获得10
5秒前
量子星尘发布了新的文献求助20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017