Remote sensing of water depths in shallow waters via artificial neural networks

水深测量 遥感 先进星载热发射反射辐射计 地质学 水深图 人工神经网络 波浪和浅水 环境科学 数字高程模型 计算机科学 海洋学 人工智能
作者
Ceyhun Özçelik,Arısoy Yalçın
出处
期刊:Estuarine Coastal and Shelf Science [Elsevier BV]
卷期号:89 (1): 89-96 被引量:98
标识
DOI:10.1016/j.ecss.2010.05.015
摘要

Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林橙完成签到,获得积分10
刚刚
abaaba发布了新的文献求助10
1秒前
蝴蝶变成毛毛虫完成签到,获得积分10
4秒前
可爱的菠萝完成签到,获得积分10
5秒前
在水一方应助LYY采纳,获得10
5秒前
魏煜佳发布了新的文献求助10
8秒前
8秒前
甘博完成签到,获得积分10
10秒前
麦乐迪应助许子健采纳,获得10
12秒前
12秒前
黎大谱发布了新的文献求助10
13秒前
认真的白开水完成签到,获得积分10
13秒前
14秒前
14秒前
三更完成签到 ,获得积分10
15秒前
lxlcx发布了新的文献求助10
16秒前
wp完成签到,获得积分10
16秒前
顾矜应助一直采纳,获得10
16秒前
冷静的奇迹完成签到,获得积分10
17秒前
嘟嘟嘟嘟完成签到 ,获得积分10
18秒前
帆帆发布了新的文献求助10
19秒前
20秒前
魏煜佳完成签到,获得积分10
21秒前
fang发布了新的文献求助20
21秒前
22秒前
汉堡包应助BareBear采纳,获得10
22秒前
26秒前
freeQQ完成签到,获得积分10
27秒前
Journey完成签到,获得积分10
28秒前
Tough完成签到 ,获得积分10
28秒前
会撒娇的凝琴完成签到,获得积分10
29秒前
31秒前
32秒前
嘻嘻哈哈发布了新的文献求助10
33秒前
jiwn发布了新的文献求助10
33秒前
念姬发布了新的文献求助10
34秒前
35秒前
35秒前
芽芽豆完成签到 ,获得积分10
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403