Remote sensing of water depths in shallow waters via artificial neural networks

水深测量 遥感 先进星载热发射反射辐射计 地质学 水深图 人工神经网络 波浪和浅水 环境科学 数字高程模型 计算机科学 海洋学 人工智能
作者
Ceyhun Özçelik,Arısoy Yalçın
出处
期刊:Estuarine Coastal and Shelf Science [Elsevier BV]
卷期号:89 (1): 89-96 被引量:98
标识
DOI:10.1016/j.ecss.2010.05.015
摘要

Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅碧空应助郑在忙采纳,获得10
1秒前
在水一方应助Mine采纳,获得10
1秒前
阿帕奇发布了新的文献求助10
2秒前
2秒前
2秒前
hmd_150发布了新的文献求助10
3秒前
3秒前
自然小鸭子完成签到,获得积分10
4秒前
NexusExplorer应助小赵爱喝水采纳,获得10
4秒前
5秒前
5秒前
决明lyt发布了新的文献求助10
5秒前
Shicheng完成签到,获得积分10
5秒前
韩永利发布了新的文献求助10
5秒前
shorting发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
许子健发布了新的文献求助10
7秒前
8秒前
jiangjiang发布了新的文献求助10
8秒前
xiaowang发布了新的文献求助10
8秒前
所所应助sunaq采纳,获得10
8秒前
akber123完成签到,获得积分10
9秒前
9秒前
朴实水壶完成签到,获得积分10
9秒前
Pure完成签到 ,获得积分10
9秒前
开心绫发布了新的文献求助10
10秒前
dongli6536发布了新的文献求助10
10秒前
11秒前
温柔傲安发布了新的文献求助10
11秒前
11秒前
11秒前
123nm完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
YK发布了新的文献求助10
12秒前
xiaokuo完成签到,获得积分10
12秒前
13秒前
13秒前
雪晴发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587421
求助须知:如何正确求助?哪些是违规求助? 4003320
关于积分的说明 12393146
捐赠科研通 3679797
什么是DOI,文献DOI怎么找? 2028329
邀请新用户注册赠送积分活动 1061783
科研通“疑难数据库(出版商)”最低求助积分说明 947980