清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics

材料科学 铁磁性 铁氧体(磁铁) 钡铁氧体 磁晶各向异性 陶瓷 冶金 磁化 磁各向异性 复合材料 物理 量子力学 磁场 核物理学
作者
Robert C. Pullar
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:57 (7): 1191-1334 被引量:2489
标识
DOI:10.1016/j.pmatsci.2012.04.001
摘要

Since their discovery in the 1950s there has been an increasing degree of interest in the hexagonal ferrites, also know as hexaferrites, which is still growing exponentially today. These have become massively important materials commercially and technologically, accounting for the bulk of the total magnetic materials manufactured globally, and they have a multitude of uses and applications. As well as their use as permanent magnets, common applications are as magnetic recording and data storage materials, and as components in electrical devices, particularly those operating at microwave/GHz frequencies. The important members of the hexaferrite family are shown below, where Me = a small 2+ ion such as cobalt, nickel or zinc, and Ba can be substituted by Sr: M-type ferrites, such as BaFe12O19 (BaM or barium ferrite), SrFe12O19 (SrM or strontium ferrite), and cobalt–titanium substituted M ferrite, Sr- or BaFe12−2xCoxTixO19 (CoTiM). Z-type ferrites (Ba3Me2Fe24O41) such as Ba3Co2Fe24O41, or Co2Z. Y-type ferrites (Ba2Me2Fe12O22), such as Ba2Co2Fe12O22, or Co2Y. W-type ferrites (BaMe2Fe16O27), such as BaCo2Fe16O27, or Co2W. X-type ferrites (Ba2Me2Fe28O46), such as Ba2Co2Fe28O46, or Co2X. U-type ferrites (Ba4Me2Fe36O60), such as Ba4Co2Fe36O60, or Co2U . The best known hexagonal ferrites are those containing barium and cobalt as divalent cations, but many variations of these and hexaferrites containing other cations (substituted or doped) will also be discussed, especially M, W, Z and Y ferrites containing strontium, zinc, nickel and magnesium. The hexagonal ferrites are all ferrimagnetic materials, and their magnetic properties are intrinsically linked to their crystalline structures. They all have a magnetocrystalline anisotropy (MCA), that is the induced magnetisation has a preferred orientation within the crystal structure. They can be divided into two main groups: those with an easy axis of magnetisation, the uniaxial hexaferrites, and those with an easy plane (or cone) of magnetisation, known as the ferroxplana or hexaplana ferrites. The structure, synthesis, solid state chemistry and magnetic properties of the ferrites shall be discussed here. This review will focus on the synthesis and properties of bulk ceramic ferrites. This is because the depth of research into thin film hexaferrites is enough for a review of its own. There has been an explosion of interest in hexaferrites in the last decade for more exotic applications. This is particularly true as electronic components for mobile and wireless communications at microwave/GHz frequencies, electromagnetic wave absorbers for EMC, RAM and stealth technologies (especially the X and U ferrites), and as composite materials. There is also a clear recent interest in nanotechnology, the development of nanofibres and fibre orientation and alignment effects in hexaferrite fibres, and composites with carbon nanotubes (CNT). One of the most exciting developments has been the discovery of single phase magnetoelectric/multiferroic hexaferrites, firstly Ba2Mg2Fe12O22 Y ferrite at cryogenic temperatures, and now Sr3Co2Fe24O41 Z ferrite at room temperature. Several M, Y, Z and U ferrites have now been characterised as room temperature multiferroics, and are discussed here. Current developments in all these key areas will be discussed in detail in Sections 7 The microwave properties of hexagonal ferrites, 8 Magnetoelectric (ME), multiferroic (MF) and dielectric properties of hexaferrites, 9 Hexaferrite composites, 10 Hexagonal ferrite fibres, 11 Nanoscale hexagonal ferrite particles, ceramics and powders of this review, and for this reason now is the appropriate time for a fresh and critical appraisal of the synthesis, properties and applications of hexagonal ferrites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
30秒前
Jasper应助懦弱的问芙采纳,获得10
30秒前
小烦同学完成签到,获得积分10
32秒前
披着羊皮的狼完成签到 ,获得积分10
51秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
羊羔蓉完成签到,获得积分10
1分钟前
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
TEMPO发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助lyh的老公采纳,获得10
3分钟前
喜悦向日葵完成签到 ,获得积分10
3分钟前
王0535完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
qiongqiong完成签到 ,获得积分10
4分钟前
4分钟前
随心所欲完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
TEMPO发布了新的文献求助10
5分钟前
5分钟前
银鱼在游完成签到,获得积分10
5分钟前
独特的师完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715110
求助须知:如何正确求助?哪些是违规求助? 5230494
关于积分的说明 15274024
捐赠科研通 4866165
什么是DOI,文献DOI怎么找? 2612734
邀请新用户注册赠送积分活动 1562936
关于科研通互助平台的介绍 1520260