In this work we study the Casimir effect with three-dimensional topological insulators including the effects of temperature and uniaxial anisotropy. Although precise experimental values for the optical properties of these materials are yet to be established, a qualitative analysis is still possible. We find qualitatively that the reported repulsive behavior and the equilibrium point are robust features of the system, and are favored by low temperatures and the enhancement of the optical response parallel to the optical axis. The dependence of the equilibrium point with temperature and with the topological magnetoelectric polarizability characteristic of three-dimensional topological insulators is also discussed.