A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species

生物材料 组织工程 活性氧 脚手架 PLGA公司 体内 生物物理学 材料科学 生物医学工程 化学 体外 生物化学 有机化学 医学 生物 生物技术
作者
John R. Martin,Mukesh Kumar Gupta,Jonathan Page,Fang Yu,Jeffrey M. Davidson,Scott A. Guelcher,Craig L. Duvall
出处
期刊:Biomaterials [Elsevier]
卷期号:35 (12): 3766-3776 被引量:158
标识
DOI:10.1016/j.biomaterials.2014.01.026
摘要

Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous polyester-based biomaterials and provide a robust, cell-degradable substrate for guiding new tissue formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兮豫完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
爆米花应助daytoy采纳,获得10
2秒前
HRC发布了新的文献求助10
2秒前
asdfqwer应助勤恳的眼神采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Hanoi347应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得50
3秒前
婉妤完成签到 ,获得积分10
3秒前
知鸢完成签到,获得积分10
3秒前
梓辰完成签到 ,获得积分10
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
pajfew应助科研通管家采纳,获得20
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
PHHHH发布了新的文献求助10
3秒前
3秒前
xiaolei001应助科研通管家采纳,获得10
3秒前
核桃完成签到,获得积分10
3秒前
万丈光芒完成签到 ,获得积分10
3秒前
汪蔓蔓完成签到 ,获得积分20
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
子车茗应助科研通管家采纳,获得20
4秒前
惠香香的完成签到,获得积分10
4秒前
zgrmws应助科研通管家采纳,获得10
4秒前
ACoolZc发布了新的文献求助10
4秒前
Xiaoab完成签到,获得积分10
4秒前
Stella应助科研通管家采纳,获得10
4秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659