已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat

高光谱成像 红外线的 遥感 偏最小二乘回归 近红外光谱 线性判别分析 噪音(视频) 全光谱成像 人工智能 模式识别(心理学) 计算机视觉 数学 计算机科学 图像(数学) 光学 地质学 物理 机器学习
作者
Keqiang Yu,Yanru Zhao,Ziyi Liu,Xiaoli Li,Fei Liu,Yong He
出处
期刊:Food and Bioprocess Technology [Springer Nature]
卷期号:7 (11): 3077-3087 被引量:70
标识
DOI:10.1007/s11947-014-1357-z
摘要

The intent of present work was to develop a valid method for detection of defective features in loquat fruits based on hyperspectral imaging. A laboratorial hyperspectral imaging device covering the visible and near-infrared region of 380–1,030 nm was utilized to acquire the loquat hyperspectral images. The corresponding spectral data were extracted from the region of interests of loquat hyperspectral images. The dummy grades were assigned to the defective and normal group of loquats, separately. Competitive adaptive reweighted sampling (CARS) was conducted to elect optimal sensitive wavelengths (SWs) which carried the most important spectral information on identifying defective and normal samples. As a result, 12 SWs at 433, 469, 519, 555, 575, 619, 899, 912, 938, 945, 970, and 998 nm were selected, respectively. Then, the partial least squares discriminant analysis (PLS-DA) model was established using the selected SWs. The results demonstrated that the CARS-PLS-DA model with the discrimination accuracy of 98.51 % had a capability of classifying two groups of loquats. Based on the characteristics of image information, minimum noise fraction (MNF) rotation was implemented on the hyperspectral images at SWs. Finally, an effective approach for detecting the defective features was exploited based on the images of MNF bands with “region growing” algorithm. For all investigated loquat samples, the developed program led to an overall detection accuracy of 92.3 %. The research revealed that the hyperspectral imaging technique is a promising tool for detecting defective features in loquat, which could provide a theoretical reference and basis for designing classification system of fruits in further work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyx-dentist发布了新的文献求助10
2秒前
研究员2发布了新的文献求助10
4秒前
momi完成签到 ,获得积分10
4秒前
英勇羿发布了新的文献求助10
6秒前
糊涂的元容完成签到,获得积分10
8秒前
9秒前
10秒前
chenjyuu应助大胆的蛋挞采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
hahaha发布了新的文献求助10
14秒前
Lee发布了新的文献求助10
15秒前
飞跃完成签到 ,获得积分10
16秒前
hyx-dentist发布了新的文献求助10
16秒前
20秒前
NS完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助聪慧的凝海采纳,获得10
22秒前
小二郎应助24采纳,获得10
23秒前
lijing发布了新的文献求助10
26秒前
科研通AI2S应助假面绅士采纳,获得10
27秒前
27秒前
在水一方应助言屿采纳,获得10
27秒前
称心豁完成签到,获得积分10
29秒前
30秒前
皮本皮发布了新的文献求助10
31秒前
32秒前
XU完成签到 ,获得积分10
33秒前
今后应助Rainbow采纳,获得10
33秒前
FrozNineTivus完成签到,获得积分10
34秒前
35秒前
淡淡衣发布了新的文献求助10
38秒前
研究员2完成签到,获得积分10
38秒前
Rainbow给Rainbow的求助进行了留言
39秒前
酷酷绣发布了新的文献求助10
44秒前
淡淡衣完成签到,获得积分10
44秒前
yyyalles应助hyx-dentist采纳,获得10
45秒前
积极的香菇完成签到 ,获得积分10
47秒前
学术小白完成签到,获得积分10
53秒前
完美世界应助XU采纳,获得30
54秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142425
求助须知:如何正确求助?哪些是违规求助? 2793350
关于积分的说明 7806409
捐赠科研通 2449622
什么是DOI,文献DOI怎么找? 1303363
科研通“疑难数据库(出版商)”最低求助积分说明 626850
版权声明 601309