Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat

高光谱成像 红外线的 遥感 偏最小二乘回归 近红外光谱 线性判别分析 噪音(视频) 全光谱成像 人工智能 模式识别(心理学) 计算机视觉 数学 计算机科学 图像(数学) 光学 地质学 物理 机器学习
作者
Keqiang Yu,Yanru Zhao,Ziyi Liu,Xiaoli Li,Fei Liu,Yong He
出处
期刊:Food and Bioprocess Technology [Springer Science+Business Media]
卷期号:7 (11): 3077-3087 被引量:75
标识
DOI:10.1007/s11947-014-1357-z
摘要

The intent of present work was to develop a valid method for detection of defective features in loquat fruits based on hyperspectral imaging. A laboratorial hyperspectral imaging device covering the visible and near-infrared region of 380–1,030 nm was utilized to acquire the loquat hyperspectral images. The corresponding spectral data were extracted from the region of interests of loquat hyperspectral images. The dummy grades were assigned to the defective and normal group of loquats, separately. Competitive adaptive reweighted sampling (CARS) was conducted to elect optimal sensitive wavelengths (SWs) which carried the most important spectral information on identifying defective and normal samples. As a result, 12 SWs at 433, 469, 519, 555, 575, 619, 899, 912, 938, 945, 970, and 998 nm were selected, respectively. Then, the partial least squares discriminant analysis (PLS-DA) model was established using the selected SWs. The results demonstrated that the CARS-PLS-DA model with the discrimination accuracy of 98.51 % had a capability of classifying two groups of loquats. Based on the characteristics of image information, minimum noise fraction (MNF) rotation was implemented on the hyperspectral images at SWs. Finally, an effective approach for detecting the defective features was exploited based on the images of MNF bands with “region growing” algorithm. For all investigated loquat samples, the developed program led to an overall detection accuracy of 92.3 %. The research revealed that the hyperspectral imaging technique is a promising tool for detecting defective features in loquat, which could provide a theoretical reference and basis for designing classification system of fruits in further work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呐呐呐完成签到 ,获得积分10
1秒前
3秒前
哒哒发布了新的文献求助10
3秒前
小白菜完成签到 ,获得积分10
3秒前
lemono_o完成签到,获得积分10
3秒前
4秒前
lllll发布了新的文献求助10
4秒前
chenli900108发布了新的文献求助10
7秒前
顾矜应助Trost采纳,获得10
7秒前
mufcyang发布了新的文献求助10
7秒前
yukang完成签到,获得积分10
7秒前
典雅的纸飞机完成签到 ,获得积分10
8秒前
wmq发布了新的文献求助10
9秒前
yangjoy完成签到 ,获得积分10
10秒前
10秒前
Wei完成签到,获得积分10
10秒前
阿山完成签到,获得积分10
10秒前
fveie完成签到 ,获得积分10
11秒前
ws_WS_给ws_WS_的求助进行了留言
12秒前
chenli900108完成签到,获得积分20
12秒前
Maestro_S发布了新的文献求助10
12秒前
14秒前
呆瓜完成签到,获得积分10
14秒前
阿山发布了新的文献求助10
14秒前
与可发布了新的文献求助10
14秒前
14秒前
大模型应助supergdb采纳,获得30
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
19秒前
Nervous完成签到,获得积分10
19秒前
隐形曼青应助王京华采纳,获得10
19秒前
20秒前
Hello应助轻松迎夏qqa采纳,获得10
20秒前
呆瓜发布了新的文献求助10
20秒前
哈哈哈哈发布了新的文献求助10
22秒前
monica发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089