Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat

高光谱成像 红外线的 遥感 偏最小二乘回归 近红外光谱 线性判别分析 噪音(视频) 全光谱成像 人工智能 模式识别(心理学) 计算机视觉 数学 计算机科学 图像(数学) 光学 地质学 物理 机器学习
作者
Keqiang Yu,Yanru Zhao,Ziyi Liu,Xiaoli Li,Fei Liu,Yong He
出处
期刊:Food and Bioprocess Technology [Springer Nature]
卷期号:7 (11): 3077-3087 被引量:75
标识
DOI:10.1007/s11947-014-1357-z
摘要

The intent of present work was to develop a valid method for detection of defective features in loquat fruits based on hyperspectral imaging. A laboratorial hyperspectral imaging device covering the visible and near-infrared region of 380–1,030 nm was utilized to acquire the loquat hyperspectral images. The corresponding spectral data were extracted from the region of interests of loquat hyperspectral images. The dummy grades were assigned to the defective and normal group of loquats, separately. Competitive adaptive reweighted sampling (CARS) was conducted to elect optimal sensitive wavelengths (SWs) which carried the most important spectral information on identifying defective and normal samples. As a result, 12 SWs at 433, 469, 519, 555, 575, 619, 899, 912, 938, 945, 970, and 998 nm were selected, respectively. Then, the partial least squares discriminant analysis (PLS-DA) model was established using the selected SWs. The results demonstrated that the CARS-PLS-DA model with the discrimination accuracy of 98.51 % had a capability of classifying two groups of loquats. Based on the characteristics of image information, minimum noise fraction (MNF) rotation was implemented on the hyperspectral images at SWs. Finally, an effective approach for detecting the defective features was exploited based on the images of MNF bands with “region growing” algorithm. For all investigated loquat samples, the developed program led to an overall detection accuracy of 92.3 %. The research revealed that the hyperspectral imaging technique is a promising tool for detecting defective features in loquat, which could provide a theoretical reference and basis for designing classification system of fruits in further work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt19960503完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
花花屯屯完成签到 ,获得积分10
4秒前
爱科研的小李完成签到 ,获得积分10
5秒前
wakawaka完成签到 ,获得积分10
5秒前
含光完成签到,获得积分10
7秒前
vinni完成签到 ,获得积分10
7秒前
bear发布了新的文献求助10
9秒前
吉祥高趙完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
chiien完成签到 ,获得积分10
19秒前
果果完成签到,获得积分10
20秒前
木子雨完成签到 ,获得积分10
20秒前
32429606完成签到 ,获得积分10
23秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
onmyway完成签到,获得积分10
30秒前
谨慎的CZ完成签到 ,获得积分10
30秒前
慕容飞凤完成签到,获得积分10
31秒前
川川完成签到 ,获得积分10
31秒前
天仙狂醉完成签到 ,获得积分10
34秒前
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
量子星尘发布了新的文献求助10
39秒前
kjdgahdg完成签到,获得积分10
40秒前
fleix发布了新的文献求助10
42秒前
不重名完成签到 ,获得积分10
42秒前
金土豆的福袋子完成签到 ,获得积分20
44秒前
羽冰酒完成签到 ,获得积分10
46秒前
Jzhaoc580完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
50秒前
52秒前
量子星尘发布了新的文献求助10
54秒前
kkjust完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936