已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat

高光谱成像 红外线的 遥感 偏最小二乘回归 近红外光谱 线性判别分析 噪音(视频) 全光谱成像 人工智能 模式识别(心理学) 计算机视觉 数学 计算机科学 图像(数学) 光学 地质学 物理 机器学习
作者
Keqiang Yu,Yanru Zhao,Ziyi Liu,Xiaoli Li,Fei Liu,Yong He
出处
期刊:Food and Bioprocess Technology [Springer Science+Business Media]
卷期号:7 (11): 3077-3087 被引量:75
标识
DOI:10.1007/s11947-014-1357-z
摘要

The intent of present work was to develop a valid method for detection of defective features in loquat fruits based on hyperspectral imaging. A laboratorial hyperspectral imaging device covering the visible and near-infrared region of 380–1,030 nm was utilized to acquire the loquat hyperspectral images. The corresponding spectral data were extracted from the region of interests of loquat hyperspectral images. The dummy grades were assigned to the defective and normal group of loquats, separately. Competitive adaptive reweighted sampling (CARS) was conducted to elect optimal sensitive wavelengths (SWs) which carried the most important spectral information on identifying defective and normal samples. As a result, 12 SWs at 433, 469, 519, 555, 575, 619, 899, 912, 938, 945, 970, and 998 nm were selected, respectively. Then, the partial least squares discriminant analysis (PLS-DA) model was established using the selected SWs. The results demonstrated that the CARS-PLS-DA model with the discrimination accuracy of 98.51 % had a capability of classifying two groups of loquats. Based on the characteristics of image information, minimum noise fraction (MNF) rotation was implemented on the hyperspectral images at SWs. Finally, an effective approach for detecting the defective features was exploited based on the images of MNF bands with “region growing” algorithm. For all investigated loquat samples, the developed program led to an overall detection accuracy of 92.3 %. The research revealed that the hyperspectral imaging technique is a promising tool for detecting defective features in loquat, which could provide a theoretical reference and basis for designing classification system of fruits in further work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
徐逊发布了新的文献求助10
2秒前
sci发布了新的文献求助10
3秒前
msk完成签到,获得积分10
3秒前
万能图书馆应助小萌兽采纳,获得10
3秒前
今后应助疯狂的石头采纳,获得10
4秒前
科研通AI6应助yangyajie采纳,获得20
4秒前
烙饼发布了新的文献求助10
4秒前
qdr发布了新的文献求助30
7秒前
俊逸的雅山完成签到 ,获得积分20
7秒前
不器君发布了新的文献求助10
8秒前
青鸟完成签到,获得积分10
8秒前
香蕉子骞完成签到 ,获得积分10
9秒前
Xiaoqiang完成签到,获得积分10
9秒前
娇娇完成签到 ,获得积分10
11秒前
12秒前
不羁完成签到 ,获得积分10
13秒前
夏爽2023发布了新的文献求助50
13秒前
优雅靖柏发布了新的文献求助10
16秒前
16秒前
re发布了新的文献求助20
19秒前
19秒前
aiine发布了新的文献求助30
21秒前
唐小刚完成签到,获得积分10
21秒前
左耳东发布了新的文献求助30
22秒前
徐猫猫完成签到,获得积分20
24秒前
yyc发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
27秒前
28秒前
徐猫猫发布了新的文献求助10
29秒前
YOGA1115完成签到,获得积分10
29秒前
yangyajie发布了新的文献求助10
29秒前
30秒前
zjky6r发布了新的文献求助10
30秒前
大方海燕发布了新的文献求助10
30秒前
田様应助FUNG采纳,获得10
31秒前
斯文败类应助kevin1018采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339