亚稳态
材料科学
爆炸物
钼
相(物质)
相变
声速
热力学
理论(学习稳定性)
固溶体
压缩(物理)
相图
物理
化学
复合材料
冶金
机器学习
有机化学
量子力学
计算机科学
作者
Xiu-Lu Zhang,Zhongli Liu,Ke Jin,Feng Xi,Yuying Yu,Ye Tan,Chengda Dai,Ling‐Cang Cai
摘要
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.
科研通智能强力驱动
Strongly Powered by AbleSci AI