Estimation of Regression Coefficients When Some Regressors are not Always Observed

估计员 数学 应用数学 缺少数据 半参数回归 条件期望 有效估计量 渐近分布 估计方程 统计 一致估计量 三角洲法 半参数模型 有界函数 最小方差无偏估计量 数学分析
作者
James M. Robins,Andrea Rotnitzky,Lue Ping Zhao
标识
DOI:10.1080/01621459.1994.10476818
摘要

Abstract In applied problems it is common to specify a model for the conditional mean of a response given a set of regressors. A subset of the regressors may be missing for some study subjects either by design or happenstance. In this article we propose a new class of semiparametric estimators, based on inverse probability weighted estimating equations, that are consistent for parameter vector α0 of the conditional mean model when the data are missing at random in the sense of Rubin and the missingness probabilities are either known or can be parametrically modeled. We show that the asymptotic variance of the optimal estimator in our class attains the semiparametric variance bound for the model by first showing that our estimation problem is a special case of the general problem of parameter estimation in an arbitrary semiparametric model in which the data are missing at random and the probability of observing complete data is bounded away from 0, and then deriving a representation for the efficient score, the semiparametric variance bound, and the influence function of any regular, asymptotically linear estimator in this more general estimation problem. Because the optimal estimator depends on the unknown probability law generating the data, we propose locally and globally adaptive semiparametric efficient estimators. We compare estimators in our class with previously proposed estimators. We show that each previous estimator is asymptotically equivalent to some, usually inefficient, estimator in our class. This equivalence is a consequence of a proposition stating that every regular asymptotic linear estimator of α0 is asymptotically equivalent to some estimator in our class. We compare various estimators in a small simulation study and offer some practical recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wearelulu完成签到,获得积分10
1秒前
是江江哥啊完成签到,获得积分10
2秒前
2秒前
yun完成签到,获得积分10
4秒前
LiTianHao完成签到,获得积分10
4秒前
FILPPED完成签到 ,获得积分10
6秒前
7秒前
天天快乐应助蓝宝宝采纳,获得10
7秒前
yun发布了新的文献求助10
8秒前
后来啊完成签到,获得积分10
8秒前
欢呼南霜发布了新的文献求助10
9秒前
9秒前
lxl发布了新的文献求助30
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
张振完成签到,获得积分10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
zho应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
陆漫完成签到 ,获得积分10
12秒前
科研小白发布了新的文献求助10
13秒前
荷叶边边头完成签到,获得积分10
13秒前
安静发箍完成签到,获得积分10
15秒前
小杨完成签到,获得积分10
15秒前
隐形白筠发布了新的文献求助10
15秒前
16秒前
蓝莓完成签到,获得积分10
17秒前
17秒前
科研通AI6应助伶俐的铁身采纳,获得10
20秒前
感谢大家完成签到 ,获得积分10
21秒前
美满的小蘑菇完成签到 ,获得积分10
21秒前
LHTTT发布了新的文献求助10
21秒前
22秒前
23秒前
754完成签到,获得积分10
23秒前
能干浩宇完成签到,获得积分20
24秒前
LHTTT完成签到,获得积分10
27秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203671
求助须知:如何正确求助?哪些是违规求助? 4383088
关于积分的说明 13647943
捐赠科研通 4240627
什么是DOI,文献DOI怎么找? 2326547
邀请新用户注册赠送积分活动 1324179
关于科研通互助平台的介绍 1276242