Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures

肺表面活性物质 水溶液 纳米颗粒 化学工程 材料科学 化学 纳米技术 有机化学 工程类
作者
Bernard P. Binks,Mark A. Kirkland,Jhonny A. Rodrigues
出处
期刊:Soft Matter [The Royal Society of Chemistry]
卷期号:4 (12): 2373-2373 被引量:232
标识
DOI:10.1039/b811291f
摘要

Using a range of complementary experiments, a detailed investigation into the behaviour of air-in-water foams stabilised by a mixture of silica nanoparticles and pure cationic surfactant has been made. At high pH where particles are significantly negatively charged and surfactant is positively charged, no foam is possible with particles alone whereas surfactant-stabilised foams break down completely within one day at all concentrations. In particle–surfactant mixtures, a synergism occurs with respect to foam formation and stability due to the adsorption of surfactant molecules onto particle surfaces. The foamability of mixed dispersions is substantially reduced compared with surfactant solutions alone. However, the foam stability passes through a maximum with respect to surfactant concentration and these foams are remarkably stable. Based on our findings from dispersion stability measurements, particle ζ potentials, the adsorption isotherm of surfactant on particles and relevant contact angles of water in air on silica surfaces, we conclude that foams are most stable when particles are strongly flocculated corresponding to them possessing a low charge, being maximally hydrophobic and containing an adsorbed monolayer of surfactant. Cryo-scanning electron microscopy (cryo-SEM) analysis of the same foams leads us to propose that foam stabilisation changes from being surfactant dominated at low surfactant concentration to being particle dominated at intermediate concentrations and reverting to surfactant dominated at higher concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助润润轩轩采纳,获得10
刚刚
刚刚
Orange应助w.h采纳,获得10
1秒前
稳重的安萱完成签到,获得积分10
1秒前
2秒前
Owen应助马静雨采纳,获得10
3秒前
3秒前
吴岳发布了新的文献求助10
4秒前
XHT完成签到,获得积分10
4秒前
Martin完成签到 ,获得积分10
5秒前
花花完成签到,获得积分10
5秒前
5秒前
Khr1stINK发布了新的文献求助10
6秒前
李繁蕊发布了新的文献求助10
6秒前
科研通AI2S应助灵巧荆采纳,获得10
8秒前
尼古拉斯二狗蛋完成签到,获得积分10
8秒前
SCI发布了新的文献求助10
8秒前
8秒前
8秒前
畅快的谷梦完成签到,获得积分10
8秒前
8秒前
猪猪hero发布了新的文献求助10
9秒前
...完成签到,获得积分10
9秒前
9秒前
pluto应助Frank采纳,获得10
10秒前
三磷酸腺苷完成签到 ,获得积分10
10秒前
10秒前
请叫我风吹麦浪应助jbhb采纳,获得10
10秒前
10秒前
小李叭叭完成签到,获得积分10
11秒前
打打应助LiShin采纳,获得10
12秒前
12秒前
Orange应助luuuuuu采纳,获得10
13秒前
13秒前
个性的大地完成签到,获得积分10
14秒前
kawayifenm完成签到,获得积分10
14秒前
lxh2424发布了新的文献求助30
14秒前
Rezeal完成签到 ,获得积分10
14秒前
w.h发布了新的文献求助10
14秒前
星星发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794