Use of a Nonnegative Constrained Principal Component Regression Chemical Mass Balance Model to Study the Contributions of Nearly Collinear Sources

共线性 主成分分析 分摊 宇宙微波背景 主成分回归 组分(热力学) 回归 数学 合成数据 回归分析 计量经济学 统计 生物系统 计算机科学 应用数学 物理 各向异性 量子力学 生物 政治学 法学 热力学
作者
Guoliang Shi,Yinchang Feng,Fang Zeng,Xiang Li,Yufen Zhang,Yuqiu Wang,Tan Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:43 (23): 8867-8873 被引量:52
标识
DOI:10.1021/es902785c
摘要

In this study, a nonnegative constrained principal component regression chemical mass balance (NCPCRCMB) model was used to solve the near collinearity problem among source profiles for source apportionment. The NCPCRCMB model added the principle component regression route into the CMB model iteration. The model was tested with the synthetic data sets, which involved contributions from eleven actual sources, with a serious near collinearity problem among them. The actual source profiles were randomly perturbed and then applied to create the synthetic receptor. The resulting synthetic receptor concentrations were also randomly perturbed to simulate measurement errors. The synthetic receptors were separately apportioned by CMB and NCPCRCMB model. The result showed that source contributions estimated by the NCPCRCMB model were much closer to the true values than those estimated by the CMB model. Next, five real ambient data sets from five cities in China were analyzed using the NCPCRCMB model to test the model practicability. Reasonable results were obtained in all cases. It is shown that the NCPCRCMB model has an advantage over the traditional CMB model when dealing with near collinearity problems in source apportionment studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒不正完成签到 ,获得积分10
刚刚
Hello应助猜不猜不采纳,获得10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
科目三应助半富半莲采纳,获得10
2秒前
3秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
玄一发布了新的文献求助10
5秒前
5秒前
领导范儿应助One采纳,获得10
7秒前
雪白小蜜蜂完成签到,获得积分10
8秒前
8秒前
8秒前
天天快乐应助玄一采纳,获得10
8秒前
10秒前
舒一一发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
bai完成签到 ,获得积分10
10秒前
等待凡英完成签到,获得积分10
11秒前
安静的荧完成签到,获得积分10
12秒前
doudou发布了新的文献求助10
12秒前
13秒前
魔幻的宫苴完成签到,获得积分20
13秒前
爆米花应助Hibiscus95采纳,获得10
13秒前
xclpp发布了新的文献求助10
15秒前
16秒前
等待凡英发布了新的文献求助10
16秒前
蓝桉完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
茶荼完成签到,获得积分10
19秒前
Uranus完成签到,获得积分10
20秒前
20秒前
研友_VZG7GZ应助One采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160