Assessing Intervention Timing in Computer-Based Education Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 支持向量机 在线机器学习 算法 逻辑回归 过程(计算) 人工神经网络 操作系统
作者
Alexander J. Stimpson,Mary L. Cummings
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:2: 78-87 被引量:39
标识
DOI:10.1109/access.2014.2303071
摘要

The use of computer-based and online education systems has made new data available that can describe the temporal and process-level progression of learning. To date, machine learning research has not considered the impacts of these properties on the machine learning prediction task in educational settings. Machine learning algorithms may have applications in supporting targeted intervention approaches. The goals of this paper are to: 1) determine the impact of process-level information on machine learning prediction results and 2) establish the effect of type of machine learning algorithm used on prediction results. Data were collected from a university level course in human factors engineering (n=35), which included both traditional classroom assessment and computer-based assessment methods. A set of common regression and classification algorithms were applied to the data to predict final course score. The overall prediction accuracy as well as the chronological progression of prediction accuracy was analyzed for each algorithm. Simple machine learning algorithms (linear regression, logistic regression) had comparable performance with more complex methods (support vector machines, artificial neural networks). Process-level information was not useful in post-hoc predictions, but contributed significantly to allowing for accurate predictions to be made earlier in the course. Process level information provides useful prediction features for development of targeted intervention techniques, as it allows more accurate predictions to be made earlier in the course. For small course data sets, the prediction accuracy and simplicity of linear regression and logistic regression make these methods preferable to more complex algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿斯蒂和琴酒完成签到 ,获得积分10
刚刚
1秒前
1秒前
倪倪完成签到,获得积分20
2秒前
文章哭哭发完成签到,获得积分10
3秒前
wuaaaaa_L发布了新的文献求助10
4秒前
成就双双发布了新的文献求助10
4秒前
5秒前
咕嘟发布了新的文献求助10
6秒前
6秒前
7秒前
瘦瘦靴完成签到,获得积分10
8秒前
10秒前
11秒前
缥缈发布了新的文献求助10
11秒前
共享精神应助我是zpb采纳,获得10
11秒前
正直念柏发布了新的文献求助10
13秒前
沸羊羊发布了新的文献求助10
15秒前
15秒前
秋风今是完成签到 ,获得积分10
17秒前
阿发发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
小蚊子发布了新的文献求助10
19秒前
19秒前
神明发布了新的文献求助10
20秒前
善良的背包完成签到,获得积分10
21秒前
隆东强发布了新的文献求助10
21秒前
23秒前
23秒前
fwz发布了新的文献求助10
23秒前
24秒前
小蚊子完成签到,获得积分10
25秒前
科研通AI5应助神明采纳,获得10
25秒前
搜集达人应助老王爱学习采纳,获得10
25秒前
liuke完成签到,获得积分10
26秒前
我是老大应助wuaaaaa_L采纳,获得10
26秒前
呼呼呼完成签到,获得积分10
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752811
求助须知:如何正确求助?哪些是违规求助? 3296371
关于积分的说明 10093570
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809