Blind image quality assessment through anisotropy

熵(时间箭头) 最大熵原理 像素 人工智能 直方图 图像质量 计算机科学 概率密度函数 概率分布 模式识别(心理学) 数学 联合熵 统计 图像(数学) 物理 量子力学
作者
Salvador Gabarda,Gabriel Cristóbal
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:24 (12): B42-B42 被引量:296
标识
DOI:10.1364/josaa.24.000b42
摘要

We describe an innovative methodology for determining the quality of digital images. The method is based on measuring the variance of the expected entropy of a given image upon a set of predefined directions. Entropy can be calculated on a local basis by using a spatial/spatial-frequency distribution as an approximation for a probability density function. The generalized Rényi entropy and the normalized pseudo-Wigner distribution (PWD) have been selected for this purpose. As a consequence, a pixel-by-pixel entropy value can be calculated, and therefore entropy histograms can be generated as well. The variance of the expected entropy is measured as a function of the directionality, and it has been taken as an anisotropy indicator. For this purpose, directional selectivity can be attained by using an oriented 1-D PWD implementation. Our main purpose is to show how such an anisotropy measure can be used as a metric to assess both the fidelity and quality of images. Experimental results show that an index such as this presents some desirable features that resemble those from an ideal image quality function, constituting a suitable quality index for natural images. Namely, in-focus, noise-free natural images have shown a maximum of this metric in comparison with other degraded, blurred, or noisy versions. This result provides a way of identifying in-focus, noise-free images from other degraded versions, allowing an automatic and nonreference classification of images according to their relative quality. It is also shown that the new measure is well correlated with classical reference metrics such as the peak signal-to-noise ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ping777755完成签到,获得积分10
刚刚
科研通AI2S应助又甘又刻采纳,获得10
2秒前
2秒前
sweet发布了新的文献求助20
3秒前
Loris完成签到,获得积分10
3秒前
青黛给青黛的求助进行了留言
4秒前
今后应助然然采纳,获得10
4秒前
5秒前
李爱国应助D33sama采纳,获得10
5秒前
WYR完成签到 ,获得积分10
5秒前
rosalieshi完成签到,获得积分0
6秒前
7秒前
7秒前
7秒前
8秒前
马小帅发布了新的文献求助30
8秒前
8秒前
等待秋寒完成签到,获得积分10
10秒前
ZHEN完成签到,获得积分10
10秒前
喜静完成签到,获得积分10
10秒前
小黑驴完成签到 ,获得积分10
10秒前
JK157完成签到,获得积分10
10秒前
10秒前
Loris发布了新的文献求助10
11秒前
斯文败类应助666采纳,获得10
11秒前
Whale发布了新的文献求助10
12秒前
感动的银耳汤完成签到,获得积分10
12秒前
JamesPei应助穿山甲先生采纳,获得10
12秒前
一玮发布了新的文献求助10
13秒前
13秒前
9999完成签到 ,获得积分10
14秒前
14秒前
嗝嗝发布了新的文献求助10
14秒前
14秒前
JL完成签到,获得积分10
15秒前
sunn完成签到,获得积分20
15秒前
木木完成签到,获得积分10
15秒前
17秒前
LYHT完成签到,获得积分10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134618
求助须知:如何正确求助?哪些是违规求助? 2785501
关于积分的说明 7772725
捐赠科研通 2441172
什么是DOI,文献DOI怎么找? 1297862
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600813