Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression

同方差 空间分析 统计 自相关 统计推断 统计假设检验 异方差 线性回归 数学 普通最小二乘法 回归分析 空间变异性 空间相关性 计量经济学
作者
Yee Leung,Changlin Mei,Wenxiu Zhang
出处
期刊:Environment and Planning A [SAGE]
卷期号:32 (5): 871-890 被引量:145
标识
DOI:10.1068/a32117
摘要

Geographically weighted regression (GWR) is a useful technique for exploring spatial nonstationarity by calibrating, for example, a regression model which allows different relationships to exist at different points in space. In this line of research, many spatial data sets have been successfully analyzed and some statistical tests for spatial variation have been developed. However, an important assumption in these studies is that the disturbance terms of the GWR model are uncorrelated and of common variance. Similar to the case in the ordinary linear regression, spatial autocorrelation can invalidate the standard assumption of homoscedasticity of the disturbances and mislead the results of statistical inference. Therefore, developing some statistical methods to test for spatial autocorrelation is a very important issue. In this paper, two kinds of the statistical tests for spatial autocorrelation among the residuals of the GWR model are suggested. Also, an efficient approximation method for calculating the p-values of the test statistics is proposed. Some simulations are run to examine the performances of the proposed methods and the results are encouraging. The study not only makes it possible to test for spatial autocorrelation among the GWR residuals in a conventional statistical manner, but also provides a useful means for model validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜橙完成签到 ,获得积分10
1秒前
丘比特应助BonnieO采纳,获得10
1秒前
LUCKYZHU完成签到,获得积分20
4秒前
4秒前
5秒前
雨小月完成签到,获得积分20
6秒前
上官若男应助乐观的雅青采纳,获得10
6秒前
现代豪完成签到,获得积分10
7秒前
傲慢与偏见zz应助狗蛋采纳,获得10
7秒前
X7完成签到,获得积分10
9秒前
宋宋发布了新的文献求助10
9秒前
CSUST科研一哥应助大先生采纳,获得10
9秒前
汉堡包应助将将采纳,获得10
10秒前
雨小月发布了新的文献求助10
10秒前
杨似孜完成签到,获得积分10
10秒前
11秒前
15秒前
傲慢与偏见zz应助狗蛋采纳,获得10
16秒前
左左发布了新的文献求助10
16秒前
Original完成签到,获得积分10
16秒前
星辰大海应助归tu采纳,获得10
16秒前
NexusExplorer应助令狐梦柏采纳,获得10
20秒前
huagu722发布了新的文献求助10
22秒前
杨似孜发布了新的文献求助10
24秒前
哈哈哈哈完成签到,获得积分10
25秒前
Hello应助1234采纳,获得10
27秒前
Sharyn227发布了新的文献求助10
27秒前
兰格格完成签到 ,获得积分10
27秒前
30秒前
小回发布了新的文献求助10
30秒前
31秒前
自信的坤发布了新的文献求助10
31秒前
31秒前
傲慢与偏见zz应助狗蛋采纳,获得10
32秒前
李耶耶完成签到,获得积分10
32秒前
Lucas应助2333采纳,获得10
33秒前
LYL发布了新的文献求助10
37秒前
欧欧发布了新的文献求助10
38秒前
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302