生态演替
次生演替
环境科学
亚马逊河
营养循环
温带雨林
生态学
亚马逊雨林
次生林
生态系统
农林复合经营
自行车
时序
地理
放弃(法律)
生物
林业
作者
Eric H. Davidson,Cláudio José Reis de Carvalho,Adelaine Michela e Silva Figueira,Françoise Yoko Ishida,Jean Pierre Henry Balbaud Ometto,Gabriela Bielefeld Nardoto,R.T. Saba,Sanae N. Hayashi,Eliane Maria Medeiros Leal,Ima Célia Guimarães Vieira,Luiz Antonio Martinelli
出处
期刊:Nature
[Springer Nature]
日期:2007-06-21
卷期号:447 (7147): 995-998
被引量:374
摘要
Phosphorus (P) is generally considered the most common limiting nutrient for productivity of mature tropical lowland forests growing on highly weathered soils. It is often assumed that P limitation also applies to young tropical forests, but nitrogen (N) losses during land-use change may alter the stoichiometric balance of nutrient cycling processes. In the Amazon basin, about 16% of the original forest area has been cleared, and about 30-50% of cleared land is estimated now to be in some stage of secondary forest succession following agricultural abandonment. Here we use forest age chronosequences to demonstrate that young successional forests growing after agricultural abandonment on highly weathered lowland tropical soils exhibit conservative N-cycling properties much like those of N-limited forests on younger soils in temperate latitudes. As secondary succession progresses, N-cycling properties recover and the dominance of a conservative P cycle typical of mature lowland tropical forests re-emerges. These successional shifts in N:P cycling ratios with forest age provide a mechanistic explanation for initially lower and then gradually increasing soil emissions of the greenhouse gas nitrous oxide (N(2)O). The patterns of N and P cycling during secondary forest succession, demonstrated here over decadal timescales, are similar to N- and P-cycling patterns during primary succession as soils age over thousands and millions of years, thus revealing that N availability in terrestrial ecosystems is ephemeral and can be disrupted by either natural or anthropogenic disturbances at several timescales.
科研通智能强力驱动
Strongly Powered by AbleSci AI