Ligra

计算机科学 图遍历 理论计算机科学 并行计算 兆字节 分布式存储器 中间性中心性 图形 分布式计算 共享内存 算法 中心性 数学 操作系统 组合数学
作者
Julian Shun,Guy E. Blelloch
出处
期刊:ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 被引量:504
标识
DOI:10.1145/2442516.2442530
摘要

There has been significant recent interest in parallel frameworks for processing graphs due to their applicability in studying social networks, the Web graph, networks in biology, and unstructured meshes in scientific simulation. Due to the desire to process large graphs, these systems have emphasized the ability to run on distributed memory machines. Today, however, a single multicore server can support more than a terabyte of memory, which can fit graphs with tens or even hundreds of billions of edges. Furthermore, for graph algorithms, shared-memory multicores are generally significantly more efficient on a per core, per dollar, and per joule basis than distributed memory systems, and shared-memory algorithms tend to be simpler than their distributed counterparts.In this paper, we present a lightweight graph processing framework that is specific for shared-memory parallel/multicore machines, which makes graph traversal algorithms easy to write. The framework has two very simple routines, one for mapping over edges and one for mapping over vertices. Our routines can be applied to any subset of the vertices, which makes the framework useful for many graph traversal algorithms that operate on subsets of the vertices. Based on recent ideas used in a very fast algorithm for breadth-first search (BFS), our routines automatically adapt to the density of vertex sets. We implement several algorithms in this framework, including BFS, graph radii estimation, graph connectivity, betweenness centrality, PageRank and single-source shortest paths. Our algorithms expressed using this framework are very simple and concise, and perform almost as well as highly optimized code. Furthermore, they get good speedups on a 40-core machine and are significantly more efficient than previously reported results using graph frameworks on machines with many more cores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏麦片完成签到,获得积分20
刚刚
maomao发布了新的文献求助30
刚刚
小蛇应助募股小采纳,获得10
刚刚
1秒前
星辰大海应助666采纳,获得10
1秒前
可爱半凡发布了新的文献求助10
1秒前
1秒前
2秒前
EliGolden发布了新的文献求助10
2秒前
2秒前
www发布了新的文献求助10
3秒前
鱼yuyu完成签到,获得积分10
3秒前
3秒前
粽粽发布了新的文献求助10
3秒前
plumcute完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
霜序完成签到 ,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助Om采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
小鱼应助科研通管家采纳,获得10
5秒前
mylove应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401