DNA损伤
DNA
DNA测序
化学
基因组
计算生物学
核苷酸
遗传学
生物
生物化学
基因
作者
Junzhou Wu,Maureen McKeague,Shana J. Sturla
摘要
Single-nucleotide-resolution sequencing of DNA damage is required to decipher the complex causal link between the identity and location of DNA adducts and their biological impact. However, the low abundance and inability to specifically amplify DNA damage hinders single-nucleotide mapping of adducts within whole genomes. Despite the high biological relevance of guanine oxidation and seminal recent advances in sequencing bulky adducts, single-nucleotide-resolution whole genome mapping of oxidative damage is not yet realized. We coupled the specificity of repair enzymes with the efficiency of a click DNA ligation reaction to insert a biocompatible locator code, enabling high-throughput, nucleotide-resolution sequencing of oxidative DNA damage in a genome. We uncovered thousands of oxidation sites with distinct patterns related to transcription, chromatin architecture, and chemical oxidation potential. Click-code-seq overcomes barriers to DNA damage sequencing and provides a new approach for generating comprehensive, sequence-specific information about chemical modification patterns in whole genomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI