亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation

材料科学 纳米晶材料 粒度 流动应力 复合材料 变形机理 晶界 晶粒生长 晶界强化 极限抗拉强度 位错 变形(气象学) 应变率 冶金 纳米技术 微观结构
作者
Pei Chen,Zhiwei Zhang,Chenshuo Liu,Tong An,Huiping Yu,Fei Qin
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:27 (6): 065012-065012 被引量:27
标识
DOI:10.1088/1361-651x/ab2621
摘要

Nanocrystalline copper (Cu) is considered to be one of the best interconnected material in integration circuit (IC) industry, because of its ultra-low resistivity and high mechanical stability. Mechanical properties of nanocrystalline Cu are completely different from those of bulk monocrystalline Cu. These properties are of high importance in the assessment of the thermo-mechanical reliability of the interconnected IC structure. To investigate the effects of the grain sizes and temperature on the mechanical properties of nanocrystalline Cu, molecular dynamics simulations of uniaxial tensile test are performed in this study. The results show that the elastic modulus of nanocrystalline Cu with grain sizes of 4.65–12.41 nm gradually increases with the increase of the mean grain sizes, the corresponding flow stress concurrently increases, and the flow stress is proportional to the square-root of the grain size, which satisfies the inverse-Hall–Petch relation. Furthermore, the elastic modulus linearly decreases with the increase of temperature. The coupled effect of the flow stress, strain rate and temperature were elaborated by the Arrhenius hyperbolic sinusoidal model. Meanwhile, the deformation activation energy of nanocrystalline Cu for various grain sizes were obtained. All of the tensile simulation tests confirmed that the mechanism of plastic deformation for nanocrystalline Cu with 4.65–12.41 nm grain sizes is mainly specific to the grain boundary sliding and grain rotation. The dislocation nucleation and migration, which is usually the deformation mechanism of plasticity for macroscopic materials, is no longer the dominant factor for nanocrystalline Cu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DD完成签到 ,获得积分10
3秒前
lizz发布了新的文献求助10
4秒前
5秒前
小合发布了新的文献求助10
8秒前
9秒前
李爱国应助lizz采纳,获得10
11秒前
15秒前
伍绮彤发布了新的文献求助10
19秒前
23秒前
MJMarker发布了新的文献求助10
24秒前
伍绮彤完成签到,获得积分10
24秒前
丢硬币的小孩完成签到,获得积分10
27秒前
经钧完成签到 ,获得积分10
31秒前
34秒前
Felicity完成签到 ,获得积分10
35秒前
小蘑菇应助刘卫朋采纳,获得10
49秒前
52秒前
可爱的函函应助Yelanjiao采纳,获得10
53秒前
1分钟前
Yelanjiao发布了新的文献求助10
1分钟前
小龙完成签到,获得积分10
1分钟前
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
归尘应助威武大将军采纳,获得30
1分钟前
oydent应助Yelanjiao采纳,获得10
1分钟前
打打应助Yelanjiao采纳,获得10
1分钟前
爱喝汽水完成签到 ,获得积分10
1分钟前
NexusExplorer应助等待秀采纳,获得10
1分钟前
shuhan完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
等待秀发布了新的文献求助10
2分钟前
可爱的函函应助等待秀采纳,获得10
2分钟前
2分钟前
香蕉觅云应助菠萝吹雪采纳,获得10
2分钟前
阵雨发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466780
求助须知:如何正确求助?哪些是违规求助? 3059575
关于积分的说明 9067114
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508934
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896