Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation

材料科学 纳米晶材料 粒度 流动应力 复合材料 变形机理 晶界 晶粒生长 晶界强化 极限抗拉强度 位错 变形(气象学) 应变率 冶金 纳米技术 微观结构
作者
Pei Chen,Zhiwei Zhang,Chenshuo Liu,Tong An,Huiping Yu,Fei Qin
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:27 (6): 065012-065012 被引量:27
标识
DOI:10.1088/1361-651x/ab2621
摘要

Nanocrystalline copper (Cu) is considered to be one of the best interconnected material in integration circuit (IC) industry, because of its ultra-low resistivity and high mechanical stability. Mechanical properties of nanocrystalline Cu are completely different from those of bulk monocrystalline Cu. These properties are of high importance in the assessment of the thermo-mechanical reliability of the interconnected IC structure. To investigate the effects of the grain sizes and temperature on the mechanical properties of nanocrystalline Cu, molecular dynamics simulations of uniaxial tensile test are performed in this study. The results show that the elastic modulus of nanocrystalline Cu with grain sizes of 4.65–12.41 nm gradually increases with the increase of the mean grain sizes, the corresponding flow stress concurrently increases, and the flow stress is proportional to the square-root of the grain size, which satisfies the inverse-Hall–Petch relation. Furthermore, the elastic modulus linearly decreases with the increase of temperature. The coupled effect of the flow stress, strain rate and temperature were elaborated by the Arrhenius hyperbolic sinusoidal model. Meanwhile, the deformation activation energy of nanocrystalline Cu for various grain sizes were obtained. All of the tensile simulation tests confirmed that the mechanism of plastic deformation for nanocrystalline Cu with 4.65–12.41 nm grain sizes is mainly specific to the grain boundary sliding and grain rotation. The dislocation nucleation and migration, which is usually the deformation mechanism of plasticity for macroscopic materials, is no longer the dominant factor for nanocrystalline Cu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林希希完成签到,获得积分10
3秒前
恋雅颖月发布了新的文献求助10
5秒前
你猜啊发布了新的文献求助10
5秒前
快歌发布了新的文献求助10
8秒前
8秒前
慕青应助Focus_BG采纳,获得10
8秒前
英俊的铭应助糖糖采纳,获得10
9秒前
10秒前
卡卡西应助杨h采纳,获得20
10秒前
11秒前
sougardenist完成签到 ,获得积分10
14秒前
15秒前
echo发布了新的文献求助10
16秒前
糖糖发布了新的文献求助10
21秒前
长山小春应助crystaler采纳,获得10
21秒前
22秒前
幸福的蓝血完成签到,获得积分10
22秒前
白天亮完成签到,获得积分10
22秒前
26秒前
27秒前
zhao完成签到 ,获得积分10
28秒前
柠檬西米露完成签到,获得积分10
29秒前
万能图书馆应助lllyyyttt采纳,获得10
29秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
31秒前
专注人生发布了新的文献求助10
31秒前
Bingtao_Lian完成签到 ,获得积分10
31秒前
Focus_BG发布了新的文献求助10
31秒前
32秒前
长山小春应助巧克力餐包采纳,获得10
34秒前
yundanli发布了新的文献求助30
35秒前
哈哈哈发布了新的文献求助10
35秒前
轻松盼雁完成签到,获得积分10
35秒前
阔达的梦露关注了科研通微信公众号
37秒前
ZZ发布了新的文献求助20
38秒前
整齐灵阳发布了新的文献求助10
40秒前
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689