清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation

材料科学 纳米晶材料 粒度 流动应力 复合材料 变形机理 晶界 晶粒生长 晶界强化 极限抗拉强度 位错 变形(气象学) 应变率 冶金 纳米技术 微观结构
作者
Pei Chen,Zhiwei Zhang,Chenshuo Liu,Tong An,Huiping Yu,Fei Qin
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:27 (6): 065012-065012 被引量:27
标识
DOI:10.1088/1361-651x/ab2621
摘要

Nanocrystalline copper (Cu) is considered to be one of the best interconnected material in integration circuit (IC) industry, because of its ultra-low resistivity and high mechanical stability. Mechanical properties of nanocrystalline Cu are completely different from those of bulk monocrystalline Cu. These properties are of high importance in the assessment of the thermo-mechanical reliability of the interconnected IC structure. To investigate the effects of the grain sizes and temperature on the mechanical properties of nanocrystalline Cu, molecular dynamics simulations of uniaxial tensile test are performed in this study. The results show that the elastic modulus of nanocrystalline Cu with grain sizes of 4.65–12.41 nm gradually increases with the increase of the mean grain sizes, the corresponding flow stress concurrently increases, and the flow stress is proportional to the square-root of the grain size, which satisfies the inverse-Hall–Petch relation. Furthermore, the elastic modulus linearly decreases with the increase of temperature. The coupled effect of the flow stress, strain rate and temperature were elaborated by the Arrhenius hyperbolic sinusoidal model. Meanwhile, the deformation activation energy of nanocrystalline Cu for various grain sizes were obtained. All of the tensile simulation tests confirmed that the mechanism of plastic deformation for nanocrystalline Cu with 4.65–12.41 nm grain sizes is mainly specific to the grain boundary sliding and grain rotation. The dislocation nucleation and migration, which is usually the deformation mechanism of plasticity for macroscopic materials, is no longer the dominant factor for nanocrystalline Cu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anan完成签到,获得积分10
15秒前
科研通AI2S应助wuran采纳,获得10
34秒前
我是老大应助科研通管家采纳,获得10
44秒前
激动的似狮完成签到,获得积分10
1分钟前
顾矜应助米歇尔采纳,获得10
1分钟前
毛毛完成签到,获得积分10
1分钟前
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
米歇尔发布了新的文献求助10
1分钟前
米歇尔完成签到,获得积分20
1分钟前
样样发布了新的文献求助10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
如歌完成签到,获得积分10
1分钟前
松松完成签到 ,获得积分10
1分钟前
可爱的函函应助重庆森林采纳,获得10
1分钟前
斯文败类应助里昂义务采纳,获得10
1分钟前
zzgpku完成签到,获得积分0
2分钟前
样样完成签到,获得积分10
2分钟前
3分钟前
重庆森林发布了新的文献求助10
3分钟前
3分钟前
里昂义务发布了新的文献求助10
3分钟前
狂野的含烟完成签到 ,获得积分10
5分钟前
x银河里完成签到 ,获得积分10
6分钟前
zhaoty完成签到,获得积分10
6分钟前
荣浩宇完成签到 ,获得积分10
7分钟前
7分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
8分钟前
jimmy完成签到,获得积分10
8分钟前
通科研完成签到 ,获得积分0
8分钟前
Noah完成签到 ,获得积分0
9分钟前
9分钟前
9分钟前
poki完成签到 ,获得积分10
9分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
11分钟前
笨笨山芙完成签到 ,获得积分10
12分钟前
时间煮雨我煮鱼完成签到,获得积分10
12分钟前
14分钟前
15分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569314
求助须知:如何正确求助?哪些是违规求助? 3991501
关于积分的说明 12355880
捐赠科研通 3663745
什么是DOI,文献DOI怎么找? 2019062
邀请新用户注册赠送积分活动 1053522
科研通“疑难数据库(出版商)”最低求助积分说明 941080