Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation

材料科学 纳米晶材料 粒度 流动应力 复合材料 变形机理 晶界 晶粒生长 晶界强化 极限抗拉强度 位错 变形(气象学) 应变率 冶金 纳米技术 微观结构
作者
Pei Chen,Zhiwei Zhang,Chenshuo Liu,Tong An,Huiping Yu,Fei Qin
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:27 (6): 065012-065012 被引量:27
标识
DOI:10.1088/1361-651x/ab2621
摘要

Nanocrystalline copper (Cu) is considered to be one of the best interconnected material in integration circuit (IC) industry, because of its ultra-low resistivity and high mechanical stability. Mechanical properties of nanocrystalline Cu are completely different from those of bulk monocrystalline Cu. These properties are of high importance in the assessment of the thermo-mechanical reliability of the interconnected IC structure. To investigate the effects of the grain sizes and temperature on the mechanical properties of nanocrystalline Cu, molecular dynamics simulations of uniaxial tensile test are performed in this study. The results show that the elastic modulus of nanocrystalline Cu with grain sizes of 4.65–12.41 nm gradually increases with the increase of the mean grain sizes, the corresponding flow stress concurrently increases, and the flow stress is proportional to the square-root of the grain size, which satisfies the inverse-Hall–Petch relation. Furthermore, the elastic modulus linearly decreases with the increase of temperature. The coupled effect of the flow stress, strain rate and temperature were elaborated by the Arrhenius hyperbolic sinusoidal model. Meanwhile, the deformation activation energy of nanocrystalline Cu for various grain sizes were obtained. All of the tensile simulation tests confirmed that the mechanism of plastic deformation for nanocrystalline Cu with 4.65–12.41 nm grain sizes is mainly specific to the grain boundary sliding and grain rotation. The dislocation nucleation and migration, which is usually the deformation mechanism of plasticity for macroscopic materials, is no longer the dominant factor for nanocrystalline Cu.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyzhnu完成签到,获得积分10
刚刚
lixiao完成签到,获得积分10
刚刚
小鱼儿发布了新的文献求助10
2秒前
阿梨完成签到,获得积分10
4秒前
卞柳云完成签到 ,获得积分10
5秒前
兴奋的铃铛完成签到,获得积分10
7秒前
xu1227完成签到,获得积分10
7秒前
8秒前
李阳完成签到 ,获得积分10
8秒前
Y神完成签到 ,获得积分10
11秒前
黎明之光发布了新的文献求助10
11秒前
ding应助高贵熊猫采纳,获得10
11秒前
飞鱼完成签到 ,获得积分10
12秒前
13秒前
Maydalian发布了新的文献求助10
13秒前
脑洞疼应助活泼的萝卜采纳,获得50
13秒前
烟花应助kkkk采纳,获得10
15秒前
kai发布了新的文献求助10
16秒前
19秒前
完美世界应助SiyangGuo采纳,获得10
19秒前
予秋完成签到,获得积分10
20秒前
北侨发布了新的文献求助10
21秒前
21秒前
南屿完成签到,获得积分10
21秒前
jify完成签到,获得积分10
21秒前
GGbond完成签到,获得积分10
22秒前
111应助含蓄的问薇采纳,获得10
24秒前
雪白砖家发布了新的文献求助30
24秒前
26秒前
ss13l完成签到,获得积分10
27秒前
kkkk完成签到,获得积分10
28秒前
北侨完成签到,获得积分10
30秒前
34秒前
34秒前
36秒前
浮游应助呐呐呐采纳,获得10
36秒前
37秒前
研友_VZG7GZ应助李义志采纳,获得10
38秒前
hhhh发布了新的文献求助10
38秒前
承泽发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306557
求助须知:如何正确求助?哪些是违规求助? 4452324
关于积分的说明 13854559
捐赠科研通 4339805
什么是DOI,文献DOI怎么找? 2382859
邀请新用户注册赠送积分活动 1377728
关于科研通互助平台的介绍 1345407