亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility

逻辑回归 腐蚀 随机森林 地理空间分析 分水岭 环境科学 水文学(农业) 统计 决策树 回归 回归分析 计算机科学 遥感 地理 数学 地质学 机器学习 岩土工程 古生物学
作者
Alireza Arabameri,M Yamani,Biswajeet Pradhan,Assefa M. Melesse,Kourosh Shirani,Dieu Tien Bui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:688: 903-916 被引量:87
标识
DOI:10.1016/j.scitotenv.2019.06.205
摘要

Gully erosion is considered as a severe environmental problem in many areas of the world which causes huge damages to agricultural lands and infrastructures (i.e. roads, buildings, and bridges); however, gully erosion modeling and prediction with high accuracy are still difficult due to the complex interactions of various factors. The objective of this research was to develop and introduce three new ensemble models, which were based on Complex Proportional Assessment of Alternatives (COPRAS), Logistic Regression (LR), Boosted Regression Tree (BRT), Random Forest (RF), and Frequency Ratio (FR) for spatial prediction of gully erosion with a case study at the Najafabad watershed (Iran). For this purpose, a total of 290 head-cut of gullies and 17 conditioning factors were collected and used to establish a geospatial database. Subsequently, FR was used to determine the spatial relationship between the conditioning factors and the head-cut of gullies, whereas RF, BRT, and LR were used to quantify the relative importance of these factors. In the next step, three ensemble gully erosion models, named COPRAS-FR-RF, COPRAS-FR-BRT, and COPRAS-FR-LR were developed and verified. The Success Rate Curve (SRC), and the Prediction Rate Curve (PRC) and their areas under the curves (AUC) were used to check the performance of the three proposed models. The result showed that Soil group, geomorphology, and drainage density factors played the key role on the occurrence of the gully erosion. All the three models have very high degree-of-fit and the prediction performance, the COPRAS-FR-RF model (AUC-SRC = 0.974 and AUC-PRC = 0.929), the COPRAS-FR-BRT model (AUC-SRC = 0.973 and AUC-PRC = 0.928), and the COPRAS-FR-LR model (AUC-SRC = 0.972 and AUC-PRC = 0.926); therefore, it is concluded that they are efficient and new powerful tools which could be used for predicting gully erosion in prone-areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
17秒前
30秒前
31秒前
白华苍松发布了新的文献求助10
34秒前
37秒前
53秒前
星际舟完成签到,获得积分10
54秒前
香蕉觅云应助科研通管家采纳,获得10
54秒前
852应助白华苍松采纳,获得10
1分钟前
酷波er应助lulu采纳,获得10
1分钟前
1分钟前
lulu发布了新的文献求助10
1分钟前
小二郎应助lulu采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
鹿茸与共发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
牧紊完成签到 ,获得积分10
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
3分钟前
Ava应助med1640采纳,获得30
4分钟前
4分钟前
HonestLiang完成签到,获得积分10
4分钟前
吴嘉俊完成签到 ,获得积分10
4分钟前
一夜很静完成签到,获得积分10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
9分钟前
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360071
求助须知:如何正确求助?哪些是违规求助? 2982609
关于积分的说明 8704562
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459032
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421