Class-specific attribute weighted naive Bayes

加权 朴素贝叶斯分类器 班级(哲学) 贝叶斯定理 人工智能 计算机科学 条件独立性 功能(生物学) 数学 数据挖掘 模式识别(心理学) a计权 机器学习 贝叶斯概率 支持向量机 医学 进化生物学 生物 放射科
作者
Liangxiao Jiang,Lungan Zhang,Liangjun Yu,Dianhong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:88: 321-330 被引量:153
标识
DOI:10.1016/j.patcog.2018.11.032
摘要

Abstract Due to its easiness to construct and interpret, along with its good performance, naive Bayes (NB) is widely used to address classification problems in real-world applications. In order to alleviate its conditional independence assumption, a mass of attribute weighting approaches have been proposed. However, almost all these approaches assign each attribute a same (global) weight for all classes. In this paper, we call them the general attribute weighting and argue that for NB attribute weighting should be class-specific (class-dependent). Based on this premise, we propose a new paradigm for attribute weighting called the class-specific attribute weighting, which discriminatively assigns each attribute a specific weight for each class. We call the resulting model class-specific attribute weighted naive Bayes (CAWNB). CAWNB selects class-specific attribute weights to maximize the conditional log likelihood (CLL) objective function or minimize the mean squared error (MSE) objective function, and thus two different versions are created, which we denote as CAWNBCLL and CAWNBMSE, respectively. Extensive empirical studies show that CAWNBCLL and CAWNBMSE all obtain more satisfactory experimental results compared with NB and other existing state-of-the-art general attribute weighting approaches. We believe that for NB class-specific attribute weighting could be a more fine-grained attribute weighting approach than general attribute weighting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不配.应助猫刀采纳,获得20
2秒前
小鹏哥完成签到,获得积分10
3秒前
bss完成签到,获得积分10
5秒前
111完成签到,获得积分10
6秒前
科研通AI2S应助贪玩的友桃采纳,获得10
9秒前
12秒前
Wenpandaen应助闪闪牛排采纳,获得10
13秒前
14秒前
不配.应助能干豆芽采纳,获得20
15秒前
不配.应助aaaaarfv采纳,获得10
16秒前
HELAOBAN发布了新的文献求助10
18秒前
chengzhiliu29发布了新的文献求助30
18秒前
20秒前
Tonald Yang发布了新的文献求助10
21秒前
Hello应助郝薇薇薇薇儿采纳,获得10
21秒前
23秒前
大胆含蕾完成签到,获得积分10
23秒前
香蕉觅云应助云上人采纳,获得10
23秒前
chengzhiliu29完成签到,获得积分20
24秒前
暴躁的夏烟完成签到,获得积分10
25秒前
江南烟雨如笙完成签到 ,获得积分10
25秒前
哈哈哈哈完成签到,获得积分10
26秒前
小蘑菇应助虚拟的半梦采纳,获得30
27秒前
隐形发布了新的文献求助10
27秒前
罗又柔应助热心小松鼠采纳,获得10
28秒前
28秒前
不配.应助布鲁克林有颗树采纳,获得10
29秒前
29秒前
bkagyin应助HELAOBAN采纳,获得10
31秒前
云上人发布了新的文献求助10
34秒前
Phosphene应助路过的骑士采纳,获得10
36秒前
Wenpandaen应助洞悉采纳,获得10
36秒前
烤鸭本鸭完成签到,获得积分10
37秒前
38秒前
38秒前
38秒前
39秒前
Vapaus发布了新的文献求助30
39秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138546
求助须知:如何正确求助?哪些是违规求助? 2789451
关于积分的说明 7791402
捐赠科研通 2445869
什么是DOI,文献DOI怎么找? 1300682
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079