MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma.

胶质瘤 磁共振成像 脑瘤 少突胶质瘤 间变性星形细胞瘤 分级(工程) 放射科
作者
Shun Zhang,Gloria C. Chiang,Rajiv Magge,Howard A. Fine,Rohan Ramakrishna,Eileen Wang Chang,Tejas Pulisetty,Yi Wang,Wenzhen Zhu,Ilhami Kovanlikaya
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:57: 254-258 被引量:6
标识
DOI:10.1016/j.mri.2018.11.008
摘要

Abstract Purpose: Texture analysis performed on MR images can detect quantitative features that are imperceptible to human visual assessment. The purpose of this study was to evaluate the feasibility of texture analysis on preoperative conventional MRI to discriminate between histological subtypes in low-grade gliomas (LGGs), and to determine the utility of texture analysis compared to histogram analysis alone. Methods: A total of 41 patients with LGG, 21 astrocytoma and 20 1p/19q codeleted oligodendroglioma were included in this study. Patients were randomly divided into training (60%) and testing (40%) sets. Texture analysis was performed on conventional MRI sequences to obtain the most discriminant factor (MDF) values for both the training and testing data. Receiver operating characteristic (ROC) curve analyses were then performed using the MDF values and 9 histogram parameters in the training data to obtain cut-off values for determining the correct rate of discriminating between astrocytoma and oligodendroglioma in the testing data. Results: The ROC analyses using MDF values resulted in an area under the curve (AUC) of 0.91 (sensitivity 86%, specificity 87%) for T2w FLAIR, 0.94 (87%, 89%) for ADC, 0.98 (93%, 95%) for T1w, and 0.88 (78%, 86%) for T1w + Gd sequences. Using the best cut-off values, MDF correctly discriminated between the two groups in 94%, 82%, 100%, and 88% of cases in the testing data, respectively. The MDF outperformed all 9 of the histogram parameters. Conclusion: Texture analysis performed on conventional preoperative MRI images can accurately predict histological subtype of LGGs, which would have an impact on clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一行白鹭上青天完成签到 ,获得积分10
1秒前
每天都很忙完成签到 ,获得积分10
1秒前
啦啦啦啦完成签到 ,获得积分10
1秒前
fhz完成签到,获得积分10
4秒前
背背佳永远happy完成签到 ,获得积分10
6秒前
郑雅柔完成签到 ,获得积分0
7秒前
搬砖的化学男完成签到 ,获得积分0
8秒前
加贝峥完成签到 ,获得积分10
9秒前
keyan完成签到,获得积分10
11秒前
小墨墨完成签到 ,获得积分10
11秒前
Julio发布了新的文献求助10
12秒前
14秒前
Novice6354完成签到 ,获得积分10
15秒前
19秒前
overlood完成签到 ,获得积分10
20秒前
24秒前
贲孱完成签到,获得积分10
25秒前
淡淡的小蘑菇完成签到 ,获得积分10
26秒前
资山雁完成签到 ,获得积分10
26秒前
进击的巨人完成签到 ,获得积分10
29秒前
昏睡的蟠桃完成签到,获得积分0
29秒前
SICDog发布了新的文献求助10
30秒前
超级大猩猩完成签到,获得积分10
31秒前
Yanping完成签到,获得积分10
33秒前
忐忑的草丛完成签到,获得积分10
35秒前
dldldl完成签到,获得积分10
35秒前
风信子deon01完成签到,获得积分10
38秒前
Una完成签到,获得积分10
39秒前
淡然思卉完成签到,获得积分10
41秒前
12356完成签到 ,获得积分10
41秒前
瀚森完成签到,获得积分10
41秒前
时林完成签到,获得积分10
43秒前
花开四海完成签到 ,获得积分10
46秒前
赎罪完成签到 ,获得积分10
51秒前
JUAN完成签到,获得积分10
51秒前
小灰灰完成签到 ,获得积分10
51秒前
nusiew完成签到,获得积分10
57秒前
Estrella应助研友_89Nm7L采纳,获得10
1分钟前
蓝桉发布了新的文献求助10
1分钟前
孔刚完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729162
求助须知:如何正确求助?哪些是违规求助? 3274353
关于积分的说明 9984999
捐赠科研通 2989550
什么是DOI,文献DOI怎么找? 1640614
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748145