Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI

医学 磁共振成像 神经组阅片室 放射科 无线电技术 肝细胞癌 介入放射学 肝细胞癌 超声波 核医学 内科学 神经学 精神科
作者
Shi‐Ting Feng,Yingmei Jia,Bing Liao,Bingsheng Huang,Qian Zhou,Xin Li,Kaikai Wei,Lili Chen,Bin Li,Wei Wang,Shuling Chen,Xiaofang He,Haibo Wang,Sui Peng,Zebin Chen,Mimi Tang,Zhihang Chen,Yang Hou,Zhenwei Peng,Ming Kuang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (9): 4648-4659 被引量:162
标识
DOI:10.1007/s00330-018-5935-8
摘要

Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in primary HCC patients. This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs) around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method was applied for dimensionality reduction and selection of the extracted features. The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation cohort were 0.85 (95% confidence interval (CI), 0.77–0.93), 88.2%, 76.2%, and 0.83 (95% CI, 0.71–0.95), 90.0%, 75.0%, respectively. We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help clinicians make precise decisions regarding treatment before the surgery. • An effective radiomics model for prediction of microvascular invasion in HCC patients is established. • The radiomics model is superior to the radiologist in prediction of MVI. • The radiomics model can help clinicians in pretreatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄发布了新的文献求助10
1秒前
2秒前
陌予完成签到 ,获得积分10
3秒前
打打应助凤梨采纳,获得10
3秒前
蟹蟹发布了新的文献求助100
6秒前
江山完成签到,获得积分10
7秒前
旺仔先生完成签到,获得积分0
8秒前
未央完成签到,获得积分10
9秒前
yx_cheng应助罗氏集团采纳,获得10
10秒前
faye502完成签到 ,获得积分10
12秒前
刻苦的战斗机完成签到,获得积分20
13秒前
高伟杰完成签到,获得积分10
13秒前
cjm发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
Owen应助XYX采纳,获得10
19秒前
20秒前
HSA发布了新的文献求助10
22秒前
23秒前
阿波罗发布了新的文献求助10
24秒前
25秒前
25秒前
xx完成签到,获得积分10
27秒前
凤梨发布了新的文献求助10
30秒前
30秒前
XYX发布了新的文献求助10
31秒前
1234发布了新的文献求助10
33秒前
韭菜盒子完成签到,获得积分20
34秒前
ssp关闭了ssp文献求助
35秒前
36秒前
无花果应助Yatpome采纳,获得10
36秒前
Erin完成签到,获得积分10
36秒前
善学以致用应助1111采纳,获得10
37秒前
czx完成签到,获得积分10
38秒前
dej完成签到,获得积分10
38秒前
39秒前
Aierlan611发布了新的文献求助10
41秒前
等待冰露完成签到 ,获得积分10
44秒前
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975