Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI

医学 磁共振成像 神经组阅片室 放射科 无线电技术 肝细胞癌 介入放射学 肝细胞癌 超声波 核医学 内科学 神经学 精神科
作者
Shi‐Ting Feng,Yingmei Jia,Bing Liao,Bingsheng Huang,Qian Zhou,Xin Li,Kaikai Wei,Lili Chen,Bin Li,Wei Wang,Shuling Chen,Xiaofang He,Haibo Wang,Sui Peng,Zebin Chen,Mimi Tang,Zhihang Chen,Yang Hou,Zhenwei Peng,Ming Kuang
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (9): 4648-4659 被引量:162
标识
DOI:10.1007/s00330-018-5935-8
摘要

Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in primary HCC patients. This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs) around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method was applied for dimensionality reduction and selection of the extracted features. The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation cohort were 0.85 (95% confidence interval (CI), 0.77–0.93), 88.2%, 76.2%, and 0.83 (95% CI, 0.71–0.95), 90.0%, 75.0%, respectively. We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help clinicians make precise decisions regarding treatment before the surgery. • An effective radiomics model for prediction of microvascular invasion in HCC patients is established. • The radiomics model is superior to the radiologist in prediction of MVI. • The radiomics model can help clinicians in pretreatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨碎寒江完成签到,获得积分10
刚刚
1秒前
会飞的木头完成签到,获得积分10
1秒前
雪白涵山发布了新的文献求助20
1秒前
shouyu29应助MADKAI采纳,获得10
1秒前
Seiswan发布了新的文献求助10
1秒前
小小菜鸟完成签到,获得积分10
2秒前
2秒前
西西弗斯完成签到,获得积分10
2秒前
KT2440完成签到,获得积分10
3秒前
顾阿秀发布了新的文献求助10
3秒前
3秒前
3秒前
gnr2000完成签到,获得积分0
3秒前
4秒前
4秒前
BareBear应助赖道之采纳,获得10
4秒前
LEMON完成签到,获得积分10
4秒前
Ava应助buuyoo采纳,获得10
5秒前
情怀应助liuwei采纳,获得10
5秒前
aaefv完成签到,获得积分10
5秒前
小小菜鸟发布了新的文献求助10
5秒前
深情安青应助123采纳,获得10
5秒前
赫初晴完成签到 ,获得积分10
5秒前
平淡的亦丝应助明研采纳,获得20
5秒前
7秒前
库外发布了新的文献求助10
8秒前
汉堡包应助清新的冷松采纳,获得10
8秒前
从心应助LiShin采纳,获得10
8秒前
帅气的听莲完成签到,获得积分10
8秒前
英姑应助Areslcy采纳,获得10
8秒前
善学以致用应助zxz采纳,获得10
9秒前
whatever应助luoshi采纳,获得10
10秒前
10秒前
科研通AI5应助徐徐采纳,获得10
11秒前
shouyu29应助MADKAI采纳,获得10
11秒前
shouyu29应助MADKAI采纳,获得10
11秒前
Lucas应助MADKAI采纳,获得10
11秒前
Vii应助MADKAI采纳,获得10
11秒前
李爱国应助MADKAI采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762