亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI

医学 磁共振成像 神经组阅片室 放射科 无线电技术 肝细胞癌 介入放射学 肝细胞癌 超声波 核医学 内科学 神经学 精神科
作者
Shi‐Ting Feng,Yingmei Jia,Bing Liao,Bingsheng Huang,Qian Zhou,Xin Li,Kaikai Wei,Lili Chen,Bin Li,Wei Wang,Shuling Chen,Xiaofang He,Haibo Wang,Sui Peng,Zebin Chen,Mimi Tang,Zhihang Chen,Yang Hou,Zhenwei Peng,Ming Kuang
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (9): 4648-4659 被引量:171
标识
DOI:10.1007/s00330-018-5935-8
摘要

Preoperative prediction of microvascular invasion (MVI) in patients with hepatocellular cancer (HCC) is important for surgery strategy making. We aimed to develop and validate a combined intratumoural and peritumoural radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in primary HCC patients. This study included a training cohort of 110 HCC patients and a validating cohort of 50 HCC patients. All the patients underwent preoperative Gd-EOB-DTPA-enhanced MRI examination and curative hepatectomy. The volumes of interest (VOIs) around the hepatic lesions including intratumoural and peritumoural regions were manually delineated in the hepatobiliary phase of MRI images, from which quantitative features were extracted and analysed. In the training cohort, machine-learning method was applied for dimensionality reduction and selection of the extracted features. The proportion of MVI-positive patients was 38.2% and 40.0% in the training and validation cohort, respectively. Supervised machine learning selected ten features to establish a predictive model for MVI. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity of the combined intratumoural and peritumoural radiomics model in the training and validation cohort were 0.85 (95% confidence interval (CI), 0.77–0.93), 88.2%, 76.2%, and 0.83 (95% CI, 0.71–0.95), 90.0%, 75.0%, respectively. We evaluate quantitative Gd-EOB-DTPA-enhanced MRI image features of both intratumoural and peritumoural regions and provide an effective radiomics-based model for the prediction of MVI in HCC patients, and may therefore help clinicians make precise decisions regarding treatment before the surgery. • An effective radiomics model for prediction of microvascular invasion in HCC patients is established. • The radiomics model is superior to the radiologist in prediction of MVI. • The radiomics model can help clinicians in pretreatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好夏天完成签到 ,获得积分10
2秒前
Arisqotle发布了新的文献求助10
2秒前
羞涩的士晋完成签到,获得积分10
3秒前
高屋建瓴完成签到,获得积分10
5秒前
闪闪的梦柏完成签到 ,获得积分10
10秒前
zy完成签到,获得积分10
24秒前
32秒前
善学以致用应助害羞绮烟采纳,获得10
35秒前
41秒前
Jasper应助科研通管家采纳,获得10
41秒前
HaCat应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
43秒前
害羞绮烟完成签到,获得积分20
46秒前
48秒前
害羞绮烟发布了新的文献求助10
49秒前
今后应助Gabriel采纳,获得10
50秒前
llpj发布了新的文献求助10
54秒前
Lin发布了新的文献求助10
59秒前
witty完成签到,获得积分10
1分钟前
Arisqotle发布了新的文献求助10
1分钟前
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
专注凌文发布了新的文献求助10
1分钟前
1分钟前
Lin完成签到,获得积分10
1分钟前
专注凌文完成签到,获得积分10
1分钟前
酷波er应助牛牛采纳,获得10
1分钟前
1分钟前
学术熊完成签到,获得积分10
1分钟前
学术熊发布了新的文献求助10
1分钟前
刘哔完成签到,获得积分10
1分钟前
haoyooo完成签到 ,获得积分10
1分钟前
NiceSunnyDay完成签到 ,获得积分10
1分钟前
诚心的访蕊完成签到 ,获得积分10
1分钟前
彭于晏应助Ziyi_Xu采纳,获得10
1分钟前
1分钟前
瓜瓜应助嘻嘻哈哈采纳,获得150
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301944
求助须知:如何正确求助?哪些是违规求助? 4449309
关于积分的说明 13848145
捐赠科研通 4335449
什么是DOI,文献DOI怎么找? 2380300
邀请新用户注册赠送积分活动 1375305
关于科研通互助平台的介绍 1341402