Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes

免疫疗法 免疫系统 自身免疫 免疫学 免疫检查点 医学 生物标志物 机制(生物学) 生物 生物化学 认识论 哲学
作者
Ciriana Orabona,Giada Mondanelli,Paolo Puccetti,Ursula Grohmann
出处
期刊:Trends in Molecular Medicine [Elsevier BV]
卷期号:24 (11): 931-941 被引量:34
标识
DOI:10.1016/j.molmed.2018.08.005
摘要

T1D is a heterogeneous autoimmune disease for which an effective cure by immunotherapy has not yet been identified. Immune checkpoint molecules are regulators of the immune system that maintain self-tolerance and prevent autoimmunity. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immune checkpoint enzyme that is defective in patients affected by T1D and is characterized by genetic polymorphism. Restoration of full IDO1 activity can be obtained in vitro by using a blocker of the interleukin-6 receptor (tocilizumab) in peripheral blood mononuclear cells from patients with T1D characterized by a specific IDO1 genotype (rs7820268 C>T) . Personalized drug targeting of IDO1 may lead to an effective cure by immunotherapy in patients with T1D. Although significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy. Because they are fundamental to rewiring immune circuits, the underlying mechanisms could be therapeutically enhanced and used as biomarkers in T1D. We examine here current knowledge of immune checkpoint molecules in T1D. One specific immune checkpoint mechanism, namely tryptophan metabolism, may meet the need for a valid drug target and robust biomarker in the quest for effective and personalized immunotherapy in T1D. Although significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy. Because they are fundamental to rewiring immune circuits, the underlying mechanisms could be therapeutically enhanced and used as biomarkers in T1D. We examine here current knowledge of immune checkpoint molecules in T1D. One specific immune checkpoint mechanism, namely tryptophan metabolism, may meet the need for a valid drug target and robust biomarker in the quest for effective and personalized immunotherapy in T1D. a ligand-operated transcription factor originally recognized as a mediator of the toxicity of dioxins. When activated by physiological ligands, AhR contributes to immune homeostasis by promoting immunoregulatory and host-protective effects. antibodies produced by an organism to constituents of its own tissues (self-antigens). The presence of autoantibodies with specificity for islet cell self-antigens is strongly associated with the development of type 1 diabetes (T1D). bone marrow-derived cells known for their ability to present antigens to naïve T cells and orchestrate adaptive immunity. DCs can also trigger inhibitory circuits that ensure immunological tolerance and tissue homeostasis. a broad term that refers to an abnormality of blood glucose levels, including hypoglycemia and hyperglycemia. a member of the tumor necrosis factor receptor superfamily that modulates acquired and natural immune response. It is expressed in several cells and tissues, including T cells, natural killer cells, and, at lower levels, in cells of innate immunity. GITR is activated by its ligand, GITR-L, which is mainly expressed on antigen-presenting cells and endothelial cells. bone marrow-derived, pluripotent cells being investigated for hematological recovery after cytoreductive therapy and transplantation, as well as for cell-based therapies for non-hematopoietic disorders. a gene complex encoding the major histocompatibility complex in humans. They are highly polymorphic, exist in different alleles, and fine-tune adaptive immune responses. acute or chronic inflammation of the pituitary gland resulting in varying degrees of pituitary gland failure. an immunoregulatory enzyme that degrades the essential amino acid tryptophan into kynurenines. an immune checkpoint protein expressed on activated T cells and which is triggered by ICOS ligand, ICOS-L. an enzymatic cascade, whose rate-limiting step is catalyzed by IDO1, that produces several tryptophan metabolites collectively known as kynurenines that have several biological effects, including mediating immune tolerance. small noncoding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. an animal model for human T1D; spontaneous disease occurs in 60–80% of female and 20–30% male mice, and is preceded by asymptomatic insulitis, as in diabetic patients. formerly known as suppressor T cells, Tregs are a subpopulation of T lymphocytes that modulate the immune system, maintaining tolerance to self-antigens and preventing autoimmune diseases. because in some cases primary ligands have evolved into ancillary receptors, a mechanism of intercellular communication has emerged during evolution that enables a ligand-bearing cell to receive immediate feedback upon activation of the cognate receptor on an adjacent cell. the most common type of genetic variation in humans; when SNPs occur within a gene or in a regulatory region near a gene, they may play a direct role in disease by affecting the function of that gene. immune regulatory circuits are functional pathways whereby lymphocytes, accessory cells, and cytokines impact on each other’s expression and function through feedback or feedforward mechanisms in a local tissue microenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助surfing0210采纳,获得10
刚刚
千千完成签到,获得积分10
刚刚
神启完成签到 ,获得积分10
刚刚
闪闪的摩托完成签到,获得积分10
刚刚
心有暖阳L完成签到,获得积分10
1秒前
WHITE完成签到,获得积分10
1秒前
lily完成签到 ,获得积分10
1秒前
单薄的夜南完成签到,获得积分10
1秒前
系统提示发布了新的文献求助10
1秒前
洪艳完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
落寞的甜瓜完成签到,获得积分10
2秒前
Archie完成签到 ,获得积分10
2秒前
阔达的以丹完成签到,获得积分20
3秒前
Zzzhuan发布了新的文献求助10
3秒前
3秒前
4秒前
匆匆完成签到,获得积分10
4秒前
坚强小蚂蚁完成签到,获得积分10
4秒前
顾矜应助Tiffany采纳,获得10
5秒前
乐乐应助幸福的乾采纳,获得10
5秒前
大模型应助活泼之云采纳,获得30
5秒前
文艺的懿完成签到,获得积分10
5秒前
Nathan完成签到,获得积分10
5秒前
MichaelQin完成签到,获得积分10
6秒前
冷艳的白莲完成签到,获得积分10
6秒前
zheng驳回了慕青应助
6秒前
公硕完成签到 ,获得积分10
6秒前
化学位移值完成签到 ,获得积分10
7秒前
7秒前
千里江山一只蝇完成签到,获得积分10
7秒前
嘿小黑完成签到,获得积分10
7秒前
峥2发布了新的文献求助10
7秒前
刘雯完成签到,获得积分10
7秒前
肖永轩完成签到,获得积分10
7秒前
寒冷的凝旋完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582