Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes

免疫疗法 免疫系统 自身免疫 免疫学 免疫检查点 医学 生物标志物 机制(生物学) 生物 生物化学 认识论 哲学
作者
Ciriana Orabona,Giada Mondanelli,Paolo Puccetti,Ursula Grohmann
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:24 (11): 931-941 被引量:34
标识
DOI:10.1016/j.molmed.2018.08.005
摘要

T1D is a heterogeneous autoimmune disease for which an effective cure by immunotherapy has not yet been identified. Immune checkpoint molecules are regulators of the immune system that maintain self-tolerance and prevent autoimmunity. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immune checkpoint enzyme that is defective in patients affected by T1D and is characterized by genetic polymorphism. Restoration of full IDO1 activity can be obtained in vitro by using a blocker of the interleukin-6 receptor (tocilizumab) in peripheral blood mononuclear cells from patients with T1D characterized by a specific IDO1 genotype (rs7820268 C>T) . Personalized drug targeting of IDO1 may lead to an effective cure by immunotherapy in patients with T1D. Although significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy. Because they are fundamental to rewiring immune circuits, the underlying mechanisms could be therapeutically enhanced and used as biomarkers in T1D. We examine here current knowledge of immune checkpoint molecules in T1D. One specific immune checkpoint mechanism, namely tryptophan metabolism, may meet the need for a valid drug target and robust biomarker in the quest for effective and personalized immunotherapy in T1D. Although significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy. Because they are fundamental to rewiring immune circuits, the underlying mechanisms could be therapeutically enhanced and used as biomarkers in T1D. We examine here current knowledge of immune checkpoint molecules in T1D. One specific immune checkpoint mechanism, namely tryptophan metabolism, may meet the need for a valid drug target and robust biomarker in the quest for effective and personalized immunotherapy in T1D. a ligand-operated transcription factor originally recognized as a mediator of the toxicity of dioxins. When activated by physiological ligands, AhR contributes to immune homeostasis by promoting immunoregulatory and host-protective effects. antibodies produced by an organism to constituents of its own tissues (self-antigens). The presence of autoantibodies with specificity for islet cell self-antigens is strongly associated with the development of type 1 diabetes (T1D). bone marrow-derived cells known for their ability to present antigens to naïve T cells and orchestrate adaptive immunity. DCs can also trigger inhibitory circuits that ensure immunological tolerance and tissue homeostasis. a broad term that refers to an abnormality of blood glucose levels, including hypoglycemia and hyperglycemia. a member of the tumor necrosis factor receptor superfamily that modulates acquired and natural immune response. It is expressed in several cells and tissues, including T cells, natural killer cells, and, at lower levels, in cells of innate immunity. GITR is activated by its ligand, GITR-L, which is mainly expressed on antigen-presenting cells and endothelial cells. bone marrow-derived, pluripotent cells being investigated for hematological recovery after cytoreductive therapy and transplantation, as well as for cell-based therapies for non-hematopoietic disorders. a gene complex encoding the major histocompatibility complex in humans. They are highly polymorphic, exist in different alleles, and fine-tune adaptive immune responses. acute or chronic inflammation of the pituitary gland resulting in varying degrees of pituitary gland failure. an immunoregulatory enzyme that degrades the essential amino acid tryptophan into kynurenines. an immune checkpoint protein expressed on activated T cells and which is triggered by ICOS ligand, ICOS-L. an enzymatic cascade, whose rate-limiting step is catalyzed by IDO1, that produces several tryptophan metabolites collectively known as kynurenines that have several biological effects, including mediating immune tolerance. small noncoding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. an animal model for human T1D; spontaneous disease occurs in 60–80% of female and 20–30% male mice, and is preceded by asymptomatic insulitis, as in diabetic patients. formerly known as suppressor T cells, Tregs are a subpopulation of T lymphocytes that modulate the immune system, maintaining tolerance to self-antigens and preventing autoimmune diseases. because in some cases primary ligands have evolved into ancillary receptors, a mechanism of intercellular communication has emerged during evolution that enables a ligand-bearing cell to receive immediate feedback upon activation of the cognate receptor on an adjacent cell. the most common type of genetic variation in humans; when SNPs occur within a gene or in a regulatory region near a gene, they may play a direct role in disease by affecting the function of that gene. immune regulatory circuits are functional pathways whereby lymphocytes, accessory cells, and cytokines impact on each other’s expression and function through feedback or feedforward mechanisms in a local tissue microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸福妙柏完成签到 ,获得积分10
1秒前
奉雨眠完成签到,获得积分10
1秒前
nkuhao完成签到,获得积分10
1秒前
前行的灿完成签到,获得积分10
2秒前
dscvigykyob完成签到,获得积分10
2秒前
张正完成签到,获得积分10
2秒前
brick2024完成签到,获得积分10
2秒前
多情的易绿完成签到,获得积分10
2秒前
美含完成签到,获得积分10
2秒前
怡然的复天完成签到,获得积分10
2秒前
3秒前
Jason完成签到,获得积分10
3秒前
赵念婉完成签到,获得积分10
4秒前
空城完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
guozizi发布了新的文献求助150
5秒前
Meyako完成签到 ,获得积分0
6秒前
前行的灿发布了新的文献求助20
6秒前
递年完成签到,获得积分10
7秒前
7秒前
欣慰的笑阳完成签到 ,获得积分10
8秒前
暮烟完成签到,获得积分10
8秒前
迷了路的猫完成签到,获得积分10
8秒前
白色的风车完成签到,获得积分10
9秒前
9秒前
万里完成签到,获得积分10
9秒前
9秒前
fang完成签到,获得积分10
10秒前
10秒前
hhh完成签到,获得积分10
11秒前
,。完成签到,获得积分10
11秒前
达雨发布了新的文献求助10
11秒前
领导范儿应助格林采纳,获得10
11秒前
Titi完成签到 ,获得积分10
11秒前
前行的灿发布了新的文献求助10
11秒前
Oil完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735