Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials

阶段(地层学) 领域(数学) 局部场电位 人工智能 睡眠(系统调用) 计算机科学 心理学 神经科学 数学 地质学 操作系统 古生物学 纯数学
作者
Yue Chen,Chen Gong,Hongwei Hao,Yi Guo,Shujun Xu,Yuhuan Zhang,Guoping Yin,Xin Cao,Anchao Yang,Fangang Meng,Jingying Ye,Hesheng Liu,Jianguo Zhang,Yanan Sui,Luming Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 118-128 被引量:50
标识
DOI:10.1109/tnsre.2018.2890272
摘要

Deep brain stimulation (DBS) is an established treatment for patients with Parkinson’s disease (PD). Sleep disorders are common complications of PD and affected by subthalamic DBS treatment. To achieve more precise neuromodulation, chronicsleepmonitoringand closed-loop DBS toward sleep–wake cycles could potentially be utilized. Local field potential (LFP) signals that are sensed by the DBS electrode could be processed as primary feedback signals. This is the first study to systematically investigate the sleep-stage classification based on LFPs in subthalamic nucleus (STN). With our newly developed recording and transmission system, STN-LFPs were collected from 12 PD patients during wakefulness and nocturnal polysomnography sleep monitoring at one month after DBS implantation. Automatic sleep-stage classificationmodels were built with robust and interpretable machine learning methods (support vector machine and decision tree). The accuracy, sensitivity, selectivity, and specificity of the classification reached high values (above90% at most measures) at group and individual levels. Features extracted in alpha (8–13 Hz), beta (13–35 Hz), and gamma (35–50 Hz) bandswere found to contribute the most to the classification. These results will directly guide the engineering development of implantable sleepmonitoring and closed-loopDBS and pave the way for a better understanding of the STN-LFP sleep patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆的小白菜完成签到,获得积分10
刚刚
不是省油的灯完成签到,获得积分10
1秒前
小管完成签到,获得积分20
1秒前
niu1发布了新的文献求助10
1秒前
夏泽水梦完成签到,获得积分10
3秒前
老实的半山完成签到,获得积分10
3秒前
指纹抒写年轮完成签到,获得积分10
3秒前
愉快的哈密瓜完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
小二郎应助成就缘分采纳,获得10
3秒前
4秒前
看看文献吧完成签到,获得积分10
4秒前
啵啵发布了新的文献求助10
4秒前
5秒前
初吻还在发布了新的文献求助10
5秒前
哇哦发布了新的文献求助10
6秒前
李唯佳发布了新的文献求助10
6秒前
6秒前
酷波er应助渊思采纳,获得10
6秒前
6秒前
罗mian完成签到,获得积分10
7秒前
7秒前
WUJIAYU完成签到 ,获得积分10
8秒前
小蘑菇应助小汤圆采纳,获得10
9秒前
认真的小熊饼干完成签到,获得积分10
9秒前
Grayball应助蒙开心采纳,获得10
9秒前
9秒前
真开心完成签到,获得积分10
9秒前
Ava应助点点采纳,获得10
9秒前
Seldomyg完成签到 ,获得积分10
10秒前
鲸是海蓝色关注了科研通微信公众号
10秒前
南亭完成签到,获得积分10
10秒前
Orange应助o10采纳,获得10
11秒前
11秒前
11秒前
小王发布了新的文献求助10
12秒前
初吻还在完成签到,获得积分10
13秒前
MADKAI发布了新的文献求助10
13秒前
Asss完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672