Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials

阶段(地层学) 领域(数学) 局部场电位 人工智能 睡眠(系统调用) 计算机科学 心理学 神经科学 数学 地质学 操作系统 古生物学 纯数学
作者
Yue Chen,Chen Gong,Hongwei Hao,Yi Guo,Shujun Xu,Yuhuan Zhang,Guoping Yin,Xin Cao,Anchao Yang,Fangang Meng,Jingying Ye,Hesheng Liu,Jianguo Zhang,Yanan Sui,Luming Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 118-128 被引量:50
标识
DOI:10.1109/tnsre.2018.2890272
摘要

Deep brain stimulation (DBS) is an established treatment for patients with Parkinson’s disease (PD). Sleep disorders are common complications of PD and affected by subthalamic DBS treatment. To achieve more precise neuromodulation, chronicsleepmonitoringand closed-loop DBS toward sleep–wake cycles could potentially be utilized. Local field potential (LFP) signals that are sensed by the DBS electrode could be processed as primary feedback signals. This is the first study to systematically investigate the sleep-stage classification based on LFPs in subthalamic nucleus (STN). With our newly developed recording and transmission system, STN-LFPs were collected from 12 PD patients during wakefulness and nocturnal polysomnography sleep monitoring at one month after DBS implantation. Automatic sleep-stage classificationmodels were built with robust and interpretable machine learning methods (support vector machine and decision tree). The accuracy, sensitivity, selectivity, and specificity of the classification reached high values (above90% at most measures) at group and individual levels. Features extracted in alpha (8–13 Hz), beta (13–35 Hz), and gamma (35–50 Hz) bandswere found to contribute the most to the classification. These results will directly guide the engineering development of implantable sleepmonitoring and closed-loopDBS and pave the way for a better understanding of the STN-LFP sleep patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心想事成发布了新的文献求助10
1秒前
大川完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
时长两年半完成签到,获得积分10
5秒前
5秒前
tannie完成签到 ,获得积分0
5秒前
归远完成签到 ,获得积分10
6秒前
7秒前
8秒前
石人发布了新的文献求助10
8秒前
ruochenzu发布了新的文献求助30
8秒前
Lucas应助asder采纳,获得10
8秒前
大模型应助中国大陆采纳,获得10
9秒前
Hao完成签到,获得积分10
10秒前
10秒前
Y_完成签到,获得积分10
11秒前
孙萌萌发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
顺利的蛋挞完成签到,获得积分10
12秒前
深情安青应助周周采纳,获得10
12秒前
niuwenyu完成签到,获得积分10
13秒前
求助人员发布了新的文献求助50
13秒前
13秒前
春深半夏发布了新的文献求助10
13秒前
彩虹猫完成签到 ,获得积分10
14秒前
guofd完成签到,获得积分10
15秒前
深情安青应助1111采纳,获得10
15秒前
15秒前
15秒前
JamesPei应助受伤灵薇采纳,获得10
17秒前
17秒前
Owen应助saikun采纳,获得10
17秒前
二号发布了新的文献求助10
18秒前
阳光的鲂完成签到 ,获得积分10
18秒前
小蘑菇应助xixi采纳,获得10
18秒前
黑白完成签到,获得积分0
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721324
求助须知:如何正确求助?哪些是违规求助? 5265309
关于积分的说明 15293874
捐赠科研通 4870668
什么是DOI,文献DOI怎么找? 2615594
邀请新用户注册赠送积分活动 1565373
关于科研通互助平台的介绍 1522430