Automated terrain feature identification from remote sensing imagery: a deep learning approach

地形 遥感 人工智能 深度学习 计算机科学 地图学 地理 鉴定(生物学) 卫星图像 特征(语言学) 计算机视觉 地质学 语言学 植物 生物 哲学
作者
Wenwen Li,Chia-Yu Hsu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:34 (4): 637-660 被引量:94
标识
DOI:10.1080/13658816.2018.1542697
摘要

Terrain feature detection is a fundamental task in terrain analysis and landscape scene interpretation. Discovering where a specific feature (i.e. sand dune, crater, etc.) is located and how it evolves over time is essential for understanding landform processes and their impacts on the environment, ecosystem, and human population. Traditional induction-based approaches are challenged by their inefficiency for generalizing diverse and complex terrain features as well as their performance for scalable processing of the massive geospatial data available. This paper presents a new deep learning (DL) approach to support automatic detection of terrain features from remotely sensed images. The novelty of this work lies in: (1) a terrain feature database containing 12,000 remotely sensed images (1,000 original images and 11,000 derived images from data augmentation) that supports data-driven model training and new discovery; (2) a DL-based object detection network empowered by ensemble learning and deep and deeper convolutional neural networks to achieve high-accuracy object detection; and (3) fine-tuning the model's characteristics and behaviors to identify the best combination of hyperparameters and other network factors. The introduction of DL into geospatial applications is expected to contribute significantly to intelligent terrain analysis, landscape scene interpretation, and the maturation of spatial data science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干雅柏完成签到,获得积分10
1秒前
八九完成签到,获得积分10
2秒前
3秒前
干雅柏发布了新的文献求助10
4秒前
Stardust发布了新的文献求助10
4秒前
黑白和完成签到 ,获得积分10
5秒前
yang完成签到,获得积分10
6秒前
金蛋蛋发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
13秒前
18秒前
淡定的电源完成签到,获得积分10
21秒前
21秒前
lm发布了新的文献求助10
24秒前
26秒前
善学以致用应助孤独问旋采纳,获得10
26秒前
孙燕应助霸气安筠采纳,获得30
27秒前
李健应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得20
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
28秒前
CAOHOU应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
CAOHOU应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
ding应助科研通管家采纳,获得10
28秒前
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
CAOHOU应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得20
28秒前
28秒前
30秒前
nbing完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173