清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated terrain feature identification from remote sensing imagery: a deep learning approach

地形 遥感 人工智能 深度学习 计算机科学 地图学 地理 鉴定(生物学) 卫星图像 特征(语言学) 计算机视觉 地质学 植物 生物 语言学 哲学
作者
Wenwen Li,Chia-Yu Hsu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:34 (4): 637-660 被引量:94
标识
DOI:10.1080/13658816.2018.1542697
摘要

Terrain feature detection is a fundamental task in terrain analysis and landscape scene interpretation. Discovering where a specific feature (i.e. sand dune, crater, etc.) is located and how it evolves over time is essential for understanding landform processes and their impacts on the environment, ecosystem, and human population. Traditional induction-based approaches are challenged by their inefficiency for generalizing diverse and complex terrain features as well as their performance for scalable processing of the massive geospatial data available. This paper presents a new deep learning (DL) approach to support automatic detection of terrain features from remotely sensed images. The novelty of this work lies in: (1) a terrain feature database containing 12,000 remotely sensed images (1,000 original images and 11,000 derived images from data augmentation) that supports data-driven model training and new discovery; (2) a DL-based object detection network empowered by ensemble learning and deep and deeper convolutional neural networks to achieve high-accuracy object detection; and (3) fine-tuning the model's characteristics and behaviors to identify the best combination of hyperparameters and other network factors. The introduction of DL into geospatial applications is expected to contribute significantly to intelligent terrain analysis, landscape scene interpretation, and the maturation of spatial data science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MS903完成签到 ,获得积分10
8秒前
20秒前
xiaowangwang完成签到 ,获得积分10
26秒前
华仔应助神秘猎牛人采纳,获得10
36秒前
慕青应助rebee采纳,获得10
45秒前
凉面完成签到 ,获得积分10
51秒前
56秒前
lily完成签到 ,获得积分10
56秒前
rebee发布了新的文献求助10
1分钟前
1分钟前
施光玲44931完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助白华苍松采纳,获得10
1分钟前
英勇星月完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
huiliang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
游泳池完成签到,获得积分10
2分钟前
DGYT7786完成签到 ,获得积分10
2分钟前
理想三寻完成签到,获得积分10
2分钟前
qianzhihe2完成签到,获得积分10
2分钟前
2分钟前
cheng完成签到 ,获得积分10
2分钟前
今后应助白华苍松采纳,获得10
3分钟前
勤qin完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
chichenglin完成签到 ,获得积分0
4分钟前
uppercrusteve完成签到,获得积分10
4分钟前
田田完成签到 ,获得积分10
4分钟前
优美的冰巧完成签到 ,获得积分10
4分钟前
娇气的天亦完成签到 ,获得积分10
4分钟前
甲壳虫完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539037
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566695
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452982