已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated terrain feature identification from remote sensing imagery: a deep learning approach

地形 遥感 人工智能 深度学习 计算机科学 地图学 地理 鉴定(生物学) 卫星图像 特征(语言学) 计算机视觉 地质学 植物 生物 语言学 哲学
作者
Wenwen Li,Chia-Yu Hsu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:34 (4): 637-660 被引量:94
标识
DOI:10.1080/13658816.2018.1542697
摘要

Terrain feature detection is a fundamental task in terrain analysis and landscape scene interpretation. Discovering where a specific feature (i.e. sand dune, crater, etc.) is located and how it evolves over time is essential for understanding landform processes and their impacts on the environment, ecosystem, and human population. Traditional induction-based approaches are challenged by their inefficiency for generalizing diverse and complex terrain features as well as their performance for scalable processing of the massive geospatial data available. This paper presents a new deep learning (DL) approach to support automatic detection of terrain features from remotely sensed images. The novelty of this work lies in: (1) a terrain feature database containing 12,000 remotely sensed images (1,000 original images and 11,000 derived images from data augmentation) that supports data-driven model training and new discovery; (2) a DL-based object detection network empowered by ensemble learning and deep and deeper convolutional neural networks to achieve high-accuracy object detection; and (3) fine-tuning the model's characteristics and behaviors to identify the best combination of hyperparameters and other network factors. The introduction of DL into geospatial applications is expected to contribute significantly to intelligent terrain analysis, landscape scene interpretation, and the maturation of spatial data science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助猪猪hero采纳,获得10
1秒前
完美世界应助haha采纳,获得10
1秒前
2秒前
清秀寇完成签到,获得积分10
2秒前
fcc完成签到,获得积分10
4秒前
5秒前
6秒前
zgn完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
ran发布了新的文献求助10
9秒前
10秒前
11秒前
lanxinyue发布了新的文献求助10
11秒前
咩咩羊发布了新的文献求助10
11秒前
大个应助王jj采纳,获得10
11秒前
12秒前
12秒前
DandanHan0916发布了新的文献求助10
12秒前
领导范儿应助instill采纳,获得10
12秒前
周苗完成签到 ,获得积分20
12秒前
lqm发布了新的文献求助10
13秒前
猪猪hero发布了新的文献求助10
13秒前
14秒前
bukeshuo发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
17秒前
水濑心源完成签到,获得积分10
18秒前
周苗关注了科研通微信公众号
18秒前
zhang完成签到,获得积分10
18秒前
CipherSage应助咩咩羊采纳,获得30
19秒前
qi发布了新的文献求助10
20秒前
HHY发布了新的文献求助10
20秒前
hhhr发布了新的文献求助10
21秒前
碧蓝靳完成签到,获得积分10
21秒前
王jj发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620