One-Step Multi-View Spectral Clustering

聚类分析 计算机科学 冗余(工程) 光谱聚类 数据挖掘 相关聚类 亲和繁殖 高维数据聚类 人工智能 约束聚类 CURE数据聚类算法 树冠聚类算法 模式识别(心理学) 操作系统
作者
Xiaofeng Zhu,Shichao Zhang,Wei He,Rongyao Hu,Cong Lei,Pengfei Zhu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31 (10): 2022-2034 被引量:220
标识
DOI:10.1109/tkde.2018.2873378
摘要

Previous multi-view spectral clustering methods are a two-step strategy, which first learns a fixed common representation (or common affinity matrix) of all the views from original data and then conducts k-means clustering on the resulting common affinity matrix. The two-step strategy is not able to output reasonable clustering performance since the goal of the first step (i.e., the common affinity matrix learning) is not designed for achieving the optimal clustering result. Moreover, the two-step strategy learns the common affinity matrix from original data, which often contain noise and redundancy to influence the quality of the common affinity matrix. To address these issues, in this paper, we design a novel One-step Multi-view Spectral Clustering (OMSC) method to output the common affinity matrix as the final clustering result. In the proposed method, the goal of the common affinity matrix learning is designed to achieving optimal clustering result and the common affinity matrix is learned from low-dimensional data where the noise and redundancy of original high-dimensional data have been removed. We further propose an iterative optimization method to fast solve the proposed objective function. Experimental results on both synthetic datasets and public datasets validated the effectiveness of our proposed method, comparing to the state-of-the-art methods for multi-view clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白泽完成签到 ,获得积分10
刚刚
我是老大应助乐乱采纳,获得10
刚刚
张宁波完成签到,获得积分10
刚刚
酷波er应助www采纳,获得10
刚刚
XXF发布了新的文献求助10
1秒前
赤邪发布了新的文献求助10
1秒前
石头发布了新的文献求助10
1秒前
2秒前
Ricky完成签到,获得积分10
2秒前
上官若男应助luuuuuu采纳,获得10
2秒前
杨永亮完成签到,获得积分10
3秒前
3秒前
袁粪到了完成签到 ,获得积分10
3秒前
3秒前
异烟肼完成签到 ,获得积分10
3秒前
Jenny应助通~采纳,获得10
3秒前
yory完成签到 ,获得积分10
4秒前
4秒前
远航完成签到 ,获得积分10
4秒前
4秒前
彭于晏应助Rrr采纳,获得10
4秒前
卓然发布了新的文献求助10
4秒前
精明的中蓝完成签到,获得积分10
5秒前
66应助小钻风采纳,获得10
5秒前
5秒前
领导范儿应助星星采纳,获得10
6秒前
汉堡包应助shotgod采纳,获得10
6秒前
如寄完成签到 ,获得积分10
6秒前
顾闭月发布了新的文献求助10
7秒前
研友_VZG7GZ应助石头采纳,获得10
7秒前
有益发布了新的文献求助10
8秒前
xibei完成签到 ,获得积分10
8秒前
9秒前
丘比特应助爱吃肉的猪采纳,获得10
9秒前
9秒前
9秒前
dyh6802发布了新的文献求助10
9秒前
10秒前
Wxx完成签到 ,获得积分10
10秒前
七栀完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794