Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study

医学 肾细胞癌 比例危险模型 肾透明细胞癌 肿瘤科 内科学 SNP公司 回顾性队列研究 单核苷酸多态性 基因型 生物信息学 基因 遗传学 生物
作者
Jinhuan Wei,Zi-Hao Feng,Yun Cao,Hong-Wei Zhao,Zhenhua Chen,Bing Liao,Qing Wang,Hui Han,Jin Zhang,Yun-Ze Xu,Bo Li,Ji-Tao Wu,Gui-Mei Qu,guoping wang,Cong Liu,Wei Xue,Qiang Liu,Jun Lü,Cai-Xia Li,Pei-Xing Li
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:20 (4): 591-600 被引量:78
标识
DOI:10.1016/s1470-2045(18)30932-x
摘要

Background Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. Methods In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. Findings Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660–0·826] in region 1, 0·734 [0·651–0·814] in region 2, and 0·736 [0·649–0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81–10·07] in the internal testing set, 5·39 [3·38–8·59] in the independent validation set, and 4·62 [2·48–8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756–0·861]). Interpretation Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助奋斗荣轩采纳,获得10
2秒前
陈瑞完成签到,获得积分10
3秒前
糯糯发布了新的文献求助10
3秒前
Jasper应助雪雪儿采纳,获得10
3秒前
4秒前
4秒前
5秒前
追寻复天完成签到 ,获得积分10
6秒前
ly发布了新的文献求助30
7秒前
wfwl发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
随安发布了新的文献求助10
8秒前
9秒前
9秒前
旷野发布了新的文献求助10
10秒前
JamesHao发布了新的文献求助10
11秒前
11秒前
吾月发布了新的文献求助10
11秒前
JamesPei应助ALUCK采纳,获得10
11秒前
情怀应助liuzhanyu采纳,获得10
12秒前
齐以言完成签到,获得积分10
13秒前
13秒前
核桃发布了新的文献求助10
13秒前
ding应助知己采纳,获得10
13秒前
Ava应助阿丑的小伙伴采纳,获得10
13秒前
小石头发布了新的文献求助10
13秒前
14秒前
1717发布了新的文献求助10
15秒前
柚子皮发布了新的文献求助20
15秒前
拖把粘十完成签到 ,获得积分10
16秒前
北柑完成签到,获得积分20
16秒前
研友_r8YgPn发布了新的文献求助10
17秒前
lzzd031416完成签到,获得积分10
17秒前
Q Eason发布了新的文献求助10
18秒前
布洛芬完成签到,获得积分20
19秒前
lzx发布了新的文献求助10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868