Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study

医学 肾细胞癌 比例危险模型 肾透明细胞癌 肿瘤科 内科学 SNP公司 回顾性队列研究 单核苷酸多态性 基因型 生物信息学 基因 遗传学 生物
作者
Jinhuan Wei,Zi-Hao Feng,Yun Cao,Hong-Wei Zhao,Zhenhua Chen,Bing Liao,Qing Wang,Hui Han,Jin Zhang,Yun-Ze Xu,Bo Li,Ji-Tao Wu,Gui-Mei Qu,guoping wang,Cong Liu,Wei Xue,Qiang Liu,Jun Lü,Cai-Xia Li,Pei-Xing Li,Zhi-Ling Zhang,Hao-Hua Yao,Yi-Hui Pan,Wen-Fang Chen,Dan Xie,Lei Shi,Zhenli Gao,Yi-Ran Huang,Fang-Jian Zhou,Shaogang Wang,Zhiping Liu,Wei Chen,Junhang Luo
出处
期刊:Lancet Oncology [Elsevier]
卷期号:20 (4): 591-600 被引量:75
标识
DOI:10.1016/s1470-2045(18)30932-x
摘要

Background Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. Methods In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. Findings Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660–0·826] in region 1, 0·734 [0·651–0·814] in region 2, and 0·736 [0·649–0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81–10·07] in the internal testing set, 5·39 [3·38–8·59] in the independent validation set, and 4·62 [2·48–8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756–0·861]). Interpretation Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓬莱山发布了新的文献求助10
刚刚
嗨翻的冰激凌完成签到 ,获得积分10
刚刚
刚刚
背后的铭完成签到,获得积分10
1秒前
ch完成签到 ,获得积分10
1秒前
桂花酒酿发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
lin应助冯小龙采纳,获得10
4秒前
CodeCraft应助忐忑的邑采纳,获得10
4秒前
中和皇极应助fengzi151采纳,获得10
5秒前
6秒前
Kuma发布了新的文献求助10
6秒前
俗人完成签到,获得积分10
6秒前
cl发布了新的文献求助10
7秒前
thunder发布了新的文献求助10
8秒前
小趴菜完成签到 ,获得积分10
8秒前
一木关注了科研通微信公众号
9秒前
辉白完成签到,获得积分10
9秒前
10秒前
10秒前
牛仔很忙完成签到 ,获得积分10
11秒前
乘风文月完成签到,获得积分10
12秒前
daq发布了新的文献求助10
12秒前
zsg完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助Hii采纳,获得10
13秒前
dmsoli完成签到,获得积分10
14秒前
大黄鸭的小黄人完成签到,获得积分10
14秒前
14秒前
耿周周完成签到,获得积分10
15秒前
李健应助hyue采纳,获得10
15秒前
FYhan发布了新的文献求助10
16秒前
忐忑的邑发布了新的文献求助10
16秒前
江一完成签到 ,获得积分10
16秒前
zed完成签到,获得积分10
16秒前
17秒前
17秒前
poker84完成签到,获得积分10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258475
求助须知:如何正确求助?哪些是违规求助? 2900346
关于积分的说明 8309788
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395794
科研通“疑难数据库(出版商)”最低求助积分说明 653293
邀请新用户注册赠送积分活动 631201