亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助激昂的吐司采纳,获得10
1秒前
qianyixingchen完成签到 ,获得积分10
3秒前
李健应助huhu采纳,获得10
5秒前
wanci应助mogekkko采纳,获得10
5秒前
平平无奇打工人完成签到 ,获得积分10
12秒前
丘比特应助小飞采纳,获得10
13秒前
DAOXIAN发布了新的文献求助10
16秒前
18秒前
皮皮完成签到 ,获得积分10
22秒前
23秒前
mogekkko发布了新的文献求助10
23秒前
拉长的迎曼完成签到 ,获得积分10
26秒前
27秒前
乐乐应助小飞采纳,获得10
27秒前
27秒前
32秒前
sunny完成签到 ,获得积分10
36秒前
zjh完成签到 ,获得积分10
37秒前
赘婿应助mogekkko采纳,获得10
38秒前
zbb123完成签到 ,获得积分10
39秒前
AamirAli完成签到,获得积分10
41秒前
汉堡包应助小飞采纳,获得10
41秒前
拿铁小笼包完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
49秒前
DAOXIAN完成签到,获得积分10
50秒前
54秒前
cqhecq完成签到,获得积分10
54秒前
taku完成签到 ,获得积分10
55秒前
香蕉觅云应助hyodong采纳,获得10
56秒前
打打应助赵振辉采纳,获得10
56秒前
58秒前
58秒前
情怀应助有魅力的仙人掌采纳,获得10
58秒前
斯文败类应助小飞采纳,获得10
59秒前
mogekkko发布了新的文献求助10
1分钟前
1分钟前
npknpk发布了新的文献求助10
1分钟前
1分钟前
叶子发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332