已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张俊琪发布了新的文献求助10
1秒前
cyyyyyy发布了新的文献求助10
1秒前
甜甜纸飞机完成签到 ,获得积分10
1秒前
李大刚完成签到 ,获得积分10
2秒前
2秒前
嘻嘻哈哈发布了新的文献求助10
3秒前
impending完成签到,获得积分10
4秒前
烟花应助JQing采纳,获得10
5秒前
火星上的山河完成签到 ,获得积分10
6秒前
yuan完成签到,获得积分10
8秒前
张俊琪完成签到,获得积分10
20秒前
26秒前
27秒前
ze发布了新的文献求助10
28秒前
Garnieta完成签到,获得积分10
29秒前
张楠发布了新的文献求助10
30秒前
30秒前
貔貅发布了新的文献求助10
31秒前
俭朴蜜蜂完成签到 ,获得积分10
32秒前
32秒前
完美世界应助戏谑采纳,获得10
33秒前
33秒前
852应助硫琉流采纳,获得10
34秒前
35秒前
浮生发布了新的文献求助10
35秒前
郑dh完成签到,获得积分10
36秒前
研友_LX7Qg8发布了新的文献求助20
37秒前
现实的一寡完成签到,获得积分10
39秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
彭于晏应助科研通管家采纳,获得30
43秒前
浮游应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
我是老大应助科研通管家采纳,获得10
43秒前
科研通AI6应助现实的一寡采纳,获得10
43秒前
44秒前
yy完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567845
关于积分的说明 14311869
捐赠科研通 4493691
什么是DOI,文献DOI怎么找? 2461823
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426021