已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感向雪完成签到,获得积分10
1秒前
3秒前
3秒前
优娜发布了新的文献求助10
3秒前
瓜瓜蛙发布了新的文献求助30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
hhhr完成签到,获得积分10
4秒前
6秒前
小胖完成签到 ,获得积分10
6秒前
牛爷爷发布了新的文献求助10
7秒前
8秒前
科目三应助黑豆子采纳,获得10
10秒前
墨菲特发布了新的文献求助10
10秒前
10秒前
Betty发布了新的文献求助10
10秒前
英姑应助曦越采纳,获得10
11秒前
兰先生发布了新的文献求助10
12秒前
小二郎应助12333采纳,获得10
13秒前
星辰大海应助归无采纳,获得10
14秒前
科研通AI6应助wei采纳,获得10
14秒前
15秒前
16秒前
17秒前
耍酷的海秋完成签到 ,获得积分10
18秒前
kid发布了新的文献求助10
20秒前
123发布了新的文献求助10
20秒前
24秒前
25秒前
无极微光应助123采纳,获得20
26秒前
yq完成签到,获得积分10
26秒前
28秒前
半。。完成签到,获得积分20
29秒前
枫泾完成签到,获得积分10
29秒前
半。。发布了新的文献求助10
32秒前
锅包又完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620