Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大模型应助言言采纳,获得10
1秒前
2秒前
敢问阁下是何人完成签到,获得积分10
3秒前
张小井完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
sky完成签到,获得积分10
4秒前
光亮语梦完成签到 ,获得积分10
5秒前
5秒前
幸福无声完成签到,获得积分10
5秒前
5秒前
6秒前
酷波er应助渴望者采纳,获得10
6秒前
6秒前
7秒前
碧蓝丹烟发布了新的文献求助10
7秒前
洋葱头小姐完成签到 ,获得积分10
7秒前
Lucas应助euphoria采纳,获得10
7秒前
伶俐草丛发布了新的文献求助10
9秒前
医只兔完成签到,获得积分10
9秒前
oneday完成签到,获得积分10
9秒前
9秒前
9秒前
lin发布了新的文献求助10
10秒前
踏实雪一完成签到,获得积分10
10秒前
天天快乐应助朝菌采纳,获得10
10秒前
周七七发布了新的文献求助10
11秒前
11秒前
zhang发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
TreyE发布了新的文献求助10
14秒前
青芒果发布了新的文献求助10
15秒前
完美世界应助韩十四采纳,获得10
17秒前
17秒前
婷婷发布了新的文献求助10
17秒前
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593