Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半夏完成签到,获得积分10
刚刚
wsn发布了新的文献求助10
刚刚
谭婷发布了新的文献求助10
1秒前
华仔应助ZZZ采纳,获得10
1秒前
汉堡包应助灯灯采纳,获得30
1秒前
英俊的铭应助Maxpan采纳,获得10
1秒前
1秒前
微笑的凌旋完成签到 ,获得积分10
1秒前
可爱冰绿完成签到,获得积分10
3秒前
桐桐应助想要发文章采纳,获得10
3秒前
科研通AI2S应助小豆采纳,获得10
3秒前
majf发布了新的文献求助10
3秒前
啊阳发布了新的文献求助10
4秒前
An完成签到 ,获得积分10
4秒前
杜兰特发布了新的文献求助20
4秒前
5秒前
LL完成签到,获得积分20
5秒前
听话的慕卉完成签到,获得积分10
5秒前
秋凛完成签到,获得积分20
6秒前
LLC完成签到 ,获得积分10
6秒前
6秒前
紫色茄子发布了新的文献求助10
6秒前
赘婿应助哈哈采纳,获得10
6秒前
失眠的汽车完成签到,获得积分10
7秒前
hanfan关注了科研通微信公众号
7秒前
李健应助Will_Ji采纳,获得10
7秒前
田様应助彬彬采纳,获得10
8秒前
8秒前
CodeCraft应助飞飞鱼采纳,获得10
9秒前
汉堡包应助ainstain采纳,获得10
9秒前
9秒前
ZZZ完成签到,获得积分10
9秒前
blueblue不熬夜完成签到,获得积分10
9秒前
10秒前
qiqi完成签到,获得积分10
10秒前
10秒前
闪闪乘风发布了新的文献求助10
10秒前
领导范儿应助LL采纳,获得10
10秒前
殷勤的柚子关注了科研通微信公众号
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494