清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiangRen完成签到 ,获得积分10
5秒前
AneyWinter66应助微S采纳,获得10
10秒前
小田完成签到 ,获得积分10
24秒前
goodsheep完成签到 ,获得积分10
34秒前
helen李完成签到 ,获得积分10
35秒前
赵赵完成签到 ,获得积分10
38秒前
科科通通完成签到,获得积分10
42秒前
柴郡喵完成签到,获得积分10
46秒前
0m0完成签到 ,获得积分10
50秒前
zm完成签到 ,获得积分10
55秒前
大饼完成签到 ,获得积分10
1分钟前
空白完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
1分钟前
1分钟前
小天小天完成签到 ,获得积分10
1分钟前
白昼完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分0
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
图南完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zw完成签到,获得积分10
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
如意书桃完成签到 ,获得积分10
2分钟前
大雪完成签到 ,获得积分10
2分钟前
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
蔡勇强完成签到 ,获得积分10
3分钟前
Wenwen0809完成签到 ,获得积分20
3分钟前
海贼王的男人完成签到 ,获得积分10
3分钟前
从全世界路过完成签到 ,获得积分10
3分钟前
3分钟前
詹姆斯哈登完成签到,获得积分10
3分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
fdwonder完成签到,获得积分10
3分钟前
个性松完成签到 ,获得积分10
3分钟前
点点完成签到 ,获得积分10
3分钟前
Hu完成签到,获得积分20
3分钟前
现实的曼安完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700