Radiomics analysis on T2-MR image to predict lymphovascular space invasion in cervical cancer

医学 无线电技术 淋巴血管侵犯 人工智能 计算机科学 癌症 计算机视觉 宫颈癌 转移 内科学
作者
Jie Tian,Wang Shou,Xi Chen,Qingxia Wu,Yongbei Zhu,Meiyun Wang,Zhenyu Liu
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 卷期号:68: 144-144 被引量:1
标识
DOI:10.1117/12.2513129
摘要

Lymphovascular space invasion (LVSI) is an important determinant for selecting treatment plan in cervical cancer (CC). For CC patients without LVSI, conization is recommended; otherwise, if LVSI is observed, hysterectomy and pelvic lymph node dissection are required. Despite the importance, current identification of LVSI can only be obtained by pathological examination through invasive biopsy or after surgery. In this study, we provided a non-invasive and preoperative method to identify LVSI by radiomics analysis on T2-magnetic resonance image (MRI), aiming at assisting personalized treatment planning. We enrolled 120 CC patients with T2 image and clinical information, and allocated them into a training set (n = 80) and a testing set (n= 40) according to the diagnostic time. Afterwards, 839 image features were extracted to reflect the intensity, shape, and high-dimensional texture information of CC. Among the 839 radiomic features, 3 features were identified to be discriminative by Least absolute shrinkage and selection operator (Lasso)-Logistic regression. Finally, we built a support vector machine (SVM) to predict LVSI status by the 3 radiomic features. In the independent testing set, the radiomics model achieved area under the receiver operating characteristic curve (AUC) of 0.7356, classification accuracy of 0.7287. The radiomics signature showed significant difference between non-LVSI and LVSI patients (p<0.05). Furthermore, we compared the radiomics model with clinical model that uses clinical information, and the radiomics model showed significant improvement than clinical factors (AUC=0.5967 in the validation cohort for clinical model).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的电源完成签到,获得积分10
1秒前
桐桐应助Analchem采纳,获得10
1秒前
3秒前
EKKOO完成签到,获得积分20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
勤劳冰烟应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得50
4秒前
臻灏发布了新的文献求助10
4秒前
5秒前
现代雁桃发布了新的文献求助10
5秒前
Yuanyuan发布了新的文献求助10
6秒前
6秒前
shinn发布了新的文献求助10
8秒前
朱巴子发布了新的文献求助10
8秒前
10秒前
11秒前
Analchem发布了新的文献求助10
11秒前
12秒前
虎头怪发布了新的文献求助10
13秒前
dinghaifeng应助momo采纳,获得10
14秒前
可爱的函函应助臻灏采纳,获得10
14秒前
16秒前
今天学习了嘛完成签到,获得积分20
17秒前
zimuki发布了新的文献求助10
17秒前
17秒前
19秒前
Analchem完成签到,获得积分10
19秒前
19秒前
马林给马林的求助进行了留言
23秒前
王大可发布了新的文献求助10
24秒前
Tsjng完成签到,获得积分10
24秒前
DrW1111完成签到,获得积分10
25秒前
yznfly应助Yuanyuan采纳,获得30
26秒前
幽默的雁露完成签到,获得积分20
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303