材料科学
复合材料
二乙炔
单体
聚合
可视化
聚合物
机械工程
工程类
作者
H Terada,Hiroaki Imai,Yuya Oaki
标识
DOI:10.1002/adma.201801121
摘要
Abstract Visualization and quantitative detection of external stimuli are significant challenges in materials science. Quantitative detection of friction force, a mechanical stress, is not easily achieved using conventional stimuli‐responsive materials. Here, the quantitative detection of friction force is reported, such as the strength and accumulated ammount, from the visible color of organic layered composites consisting of polydiacetylene (PDA) and organic amines without an excitation light source. The composites of the layered diacetylene monomer crystal and interlayer organic amine are synthesized through self‐organization from the precursor solution. After topochemical polymerization, the layered composites based on PDA show tunable temperature‐responsive and mechanoresponsive color‐change properties depending on the types of interlayer amines. The layered composites are homogeneously coated on a filter paper. The change in color of the paper is quantitatively used to visualize the strength and accumulated amount of the applied friction force. Furthermore, writing pressure is measured by friction force using the paper device.
科研通智能强力驱动
Strongly Powered by AbleSci AI