Deep wavelet scattering features for infrasonic threat identification

小波 次声 计算机科学 模式识别(心理学) 鉴定(生物学) 特征提取 人工智能 小波变换 信号处理 语音识别 声学 电信 雷达 物理 植物 生物
作者
Kaylen J. Bryan,Kaleb E. Smith,Mitchell Solomon,Dean A. Clauter,Anthony O. Smith,Adrian M. Peter
标识
DOI:10.1117/12.2304544
摘要

Infrasonic waves continue to be a staple of threat identification due to their presence in a variety of natural and man-made events, along with their low-frequency characteristics supporting detection over great distances. Considering the large set of phenomena that produce infrasound, it is critical to develop methodologies that exploit the unique signatures generated by such events to aid in threat identification. In this work, we propose a new infrasonic time-series classification technique based on the recently introduced Wavelet Scattering Transform (WST). Leveraging concepts from wavelet theory and signal processing, the WST induces a deep feature mapping on time series that is locally time invariant and stable to time-warping deformations through cascades of signal filtering and modulus operators. We demonstrate that the WST features can be utilized with a variety of classification methods to gain better discrimination. Experimental validation on the Library of Typical Infrasonic Signals (LOTIS)—containing infrasound events from mountain associated waves, microbaroms, internal atmospheric gravity waves and volcanic eruptions—illustrates the effectiveness of our approach and demonstrate it to be competitive with other state-of-the-art classification techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
22发布了新的文献求助10
1秒前
博士牲牛马完成签到,获得积分10
1秒前
1秒前
善学以致用应助lize5493采纳,获得10
2秒前
顾矜应助xiao采纳,获得10
2秒前
tsw完成签到,获得积分10
2秒前
飞翔的霸天哥应助carl采纳,获得30
2秒前
Huihuang_He发布了新的文献求助10
2秒前
闾丘志泽发布了新的文献求助30
3秒前
susu完成签到,获得积分10
3秒前
明亮惋庭完成签到,获得积分10
5秒前
5秒前
火星上的迎天完成签到,获得积分10
5秒前
5秒前
搜集达人应助weiliu采纳,获得10
5秒前
NoNoQ完成签到,获得积分10
5秒前
小胖饼饼发布了新的文献求助10
6秒前
7秒前
慕青应助无辜的从云采纳,获得30
8秒前
烟花应助王明月采纳,获得10
9秒前
神勇的荟发布了新的文献求助10
10秒前
10秒前
隐形曼青应助jiao采纳,获得10
10秒前
11秒前
我爱学习发布了新的文献求助10
11秒前
11秒前
11秒前
lingo发布了新的文献求助10
11秒前
Orange应助hometown采纳,获得10
11秒前
12秒前
小蘑菇应助柳青采纳,获得10
12秒前
潇潇发布了新的文献求助10
12秒前
12秒前
13秒前
飞翔的霸天哥应助carl采纳,获得30
13秒前
帅哥完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710