小波
次声
计算机科学
模式识别(心理学)
鉴定(生物学)
特征提取
人工智能
小波变换
信号处理
语音识别
声学
电信
雷达
物理
植物
生物
作者
Kaylen J. Bryan,Kaleb E. Smith,Mitchell Solomon,Dean A. Clauter,Anthony O. Smith,Adrian M. Peter
摘要
Infrasonic waves continue to be a staple of threat identification due to their presence in a variety of natural and man-made events, along with their low-frequency characteristics supporting detection over great distances. Considering the large set of phenomena that produce infrasound, it is critical to develop methodologies that exploit the unique signatures generated by such events to aid in threat identification. In this work, we propose a new infrasonic time-series classification technique based on the recently introduced Wavelet Scattering Transform (WST). Leveraging concepts from wavelet theory and signal processing, the WST induces a deep feature mapping on time series that is locally time invariant and stable to time-warping deformations through cascades of signal filtering and modulus operators. We demonstrate that the WST features can be utilized with a variety of classification methods to gain better discrimination. Experimental validation on the Library of Typical Infrasonic Signals (LOTIS)—containing infrasound events from mountain associated waves, microbaroms, internal atmospheric gravity waves and volcanic eruptions—illustrates the effectiveness of our approach and demonstrate it to be competitive with other state-of-the-art classification techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI