HBPred: a tool to identify growth hormone-binding proteins

刀切重采样 计算机科学 支持向量机 人工智能 机器学习 特征选择 过度拟合 水准点(测量) 排名(信息检索) 数据挖掘 计算生物学 生物 数学 统计 地理 估计员 人工神经网络 大地测量学
作者
Hua Tang,Ya-Wei Zhao,Ping Zou,Chunmei Zhang,Rong Chen,Po Huang,Hao Lin
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:14 (8): 957-964 被引量:171
标识
DOI:10.7150/ijbs.24174
摘要

Hormone-binding protein (HBP) is a kind of soluble carrier protein and can selectively and non-covalently interact with hormone. HBP plays an important role in life growth, but its function is still unclear. Correct recognition of HBPs is the first step to further study their function and understand their biological process. However, it is difficult to correctly recognize HBPs from more and more proteins through traditional biochemical experiments because of high experimental cost and long experimental period. To overcome these disadvantages, we designed a computational method for identifying HBPs accurately in the study. At first, we collected HBP data from UniProt to establish a high-quality benchmark dataset. Based on the dataset, the dipeptide composition was extracted from HBP residue sequences. In order to find out the optimal features to provide key clues for HBP identification, the analysis of various (ANOVA) was performed for feature ranking. The optimal features were selected through the incremental feature selection strategy. Subsequently, the features were inputted into support vector machine (SVM) for prediction model construction. Jackknife cross-validation results showed that 88.6% HBPs and 81.3% non-HBPs were correctly recognized, suggesting that our proposed model was powerful. This study provides a new strategy to identify HBPs. Moreover, based on the proposed model, we established a webserver called HBPred, which could be freely accessed at http://lin-group.cn/server/HBPred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
JSM完成签到,获得积分10
刚刚
刚刚
靓丽的魔镜完成签到,获得积分20
1秒前
1秒前
宁小童完成签到,获得积分10
2秒前
gwentea完成签到,获得积分10
2秒前
邓佳鑫Alan应助潇洒的豪采纳,获得10
2秒前
所所应助潇洒的豪采纳,获得10
2秒前
2秒前
suliang完成签到,获得积分10
3秒前
达布妞完成签到,获得积分10
3秒前
3秒前
Akim应助冯小研采纳,获得10
3秒前
比奇堡发布了新的文献求助10
3秒前
ding应助洁净的醉波采纳,获得10
3秒前
3秒前
4秒前
Hello应助奋斗灵凡采纳,获得10
4秒前
Zhang_Yakun发布了新的文献求助30
4秒前
寻道图强应助LSC采纳,获得30
5秒前
香蕉觅云应助jiangqingquan采纳,获得10
6秒前
6秒前
顺心飞扬完成签到,获得积分10
7秒前
lqm完成签到,获得积分10
8秒前
8秒前
Tal发布了新的文献求助10
8秒前
8秒前
8秒前
儒雅祥完成签到,获得积分10
9秒前
深情安青应助风清扬采纳,获得10
10秒前
11秒前
阿晖完成签到,获得积分10
11秒前
12秒前
学术渣滓完成签到,获得积分10
13秒前
15秒前
月儿完成签到,获得积分10
15秒前
小猪完成签到 ,获得积分10
16秒前
善学以致用应助huangpeihao采纳,获得10
16秒前
16秒前
dengsiqian给dengsiqian的求助进行了留言
17秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501262
求助须知:如何正确求助?哪些是违规求助? 4597591
关于积分的说明 14459908
捐赠科研通 4531076
什么是DOI,文献DOI怎么找? 2483103
邀请新用户注册赠送积分活动 1466734
关于科研通互助平台的介绍 1439367