HBPred: a tool to identify growth hormone-binding proteins

刀切重采样 计算机科学 支持向量机 人工智能 机器学习 特征选择 过度拟合 水准点(测量) 排名(信息检索) 数据挖掘 计算生物学 生物 数学 统计 地理 估计员 人工神经网络 大地测量学
作者
Hua Tang,Ya-Wei Zhao,Ping Zou,Chunmei Zhang,Rong Chen,Po Huang,Hao Lin
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:14 (8): 957-964 被引量:171
标识
DOI:10.7150/ijbs.24174
摘要

Hormone-binding protein (HBP) is a kind of soluble carrier protein and can selectively and non-covalently interact with hormone. HBP plays an important role in life growth, but its function is still unclear. Correct recognition of HBPs is the first step to further study their function and understand their biological process. However, it is difficult to correctly recognize HBPs from more and more proteins through traditional biochemical experiments because of high experimental cost and long experimental period. To overcome these disadvantages, we designed a computational method for identifying HBPs accurately in the study. At first, we collected HBP data from UniProt to establish a high-quality benchmark dataset. Based on the dataset, the dipeptide composition was extracted from HBP residue sequences. In order to find out the optimal features to provide key clues for HBP identification, the analysis of various (ANOVA) was performed for feature ranking. The optimal features were selected through the incremental feature selection strategy. Subsequently, the features were inputted into support vector machine (SVM) for prediction model construction. Jackknife cross-validation results showed that 88.6% HBPs and 81.3% non-HBPs were correctly recognized, suggesting that our proposed model was powerful. This study provides a new strategy to identify HBPs. Moreover, based on the proposed model, we established a webserver called HBPred, which could be freely accessed at http://lin-group.cn/server/HBPred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王萌茹完成签到,获得积分10
2秒前
2秒前
3秒前
王浩发布了新的文献求助10
3秒前
DJDJDDDJ完成签到,获得积分10
3秒前
栗子完成签到,获得积分10
3秒前
Potato123123发布了新的文献求助10
3秒前
杨三多发布了新的文献求助10
3秒前
4秒前
zqh关闭了zqh文献求助
5秒前
SciGPT应助zyl采纳,获得10
5秒前
Jasper应助HanluMa采纳,获得20
6秒前
不争气的棺材板完成签到,获得积分10
7秒前
7秒前
8秒前
FashionBoy应助卓念梦采纳,获得10
8秒前
8秒前
小白完成签到 ,获得积分10
8秒前
周公完成签到,获得积分20
9秒前
AN发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
orixero应助高青丝采纳,获得10
10秒前
冰雪不容完成签到,获得积分10
10秒前
望北完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Grinde发布了新的文献求助10
11秒前
11秒前
生动的电脑完成签到,获得积分10
11秒前
11秒前
12秒前
ZSS_ism完成签到,获得积分10
12秒前
传奇3应助Lorain采纳,获得10
12秒前
超级桂花糕完成签到,获得积分10
12秒前
Feng完成签到,获得积分10
12秒前
jeremy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709324
求助须知:如何正确求助?哪些是违规求助? 5194010
关于积分的说明 15256489
捐赠科研通 4862101
什么是DOI,文献DOI怎么找? 2609855
邀请新用户注册赠送积分活动 1560307
关于科研通互助平台的介绍 1518020