HBPred: a tool to identify growth hormone-binding proteins

刀切重采样 计算机科学 支持向量机 人工智能 机器学习 特征选择 过度拟合 水准点(测量) 排名(信息检索) 数据挖掘 计算生物学 生物 数学 统计 地理 估计员 人工神经网络 大地测量学
作者
Hua Tang,Ya-Wei Zhao,Ping Zou,Chunmei Zhang,Rong Chen,Po Huang,Hao Lin
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:14 (8): 957-964 被引量:171
标识
DOI:10.7150/ijbs.24174
摘要

Hormone-binding protein (HBP) is a kind of soluble carrier protein and can selectively and non-covalently interact with hormone. HBP plays an important role in life growth, but its function is still unclear. Correct recognition of HBPs is the first step to further study their function and understand their biological process. However, it is difficult to correctly recognize HBPs from more and more proteins through traditional biochemical experiments because of high experimental cost and long experimental period. To overcome these disadvantages, we designed a computational method for identifying HBPs accurately in the study. At first, we collected HBP data from UniProt to establish a high-quality benchmark dataset. Based on the dataset, the dipeptide composition was extracted from HBP residue sequences. In order to find out the optimal features to provide key clues for HBP identification, the analysis of various (ANOVA) was performed for feature ranking. The optimal features were selected through the incremental feature selection strategy. Subsequently, the features were inputted into support vector machine (SVM) for prediction model construction. Jackknife cross-validation results showed that 88.6% HBPs and 81.3% non-HBPs were correctly recognized, suggesting that our proposed model was powerful. This study provides a new strategy to identify HBPs. Moreover, based on the proposed model, we established a webserver called HBPred, which could be freely accessed at http://lin-group.cn/server/HBPred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxh20010906发布了新的文献求助10
刚刚
刚刚
接受饼干完成签到,获得积分10
刚刚
lq发布了新的文献求助10
1秒前
xixia发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI2S应助sunchang采纳,获得10
2秒前
lzy应助彩色雪柳采纳,获得30
3秒前
海森咸鱼堡完成签到,获得积分10
3秒前
十一发布了新的文献求助10
4秒前
丘比特应助17160075653采纳,获得10
4秒前
sooo发布了新的文献求助10
5秒前
万能图书馆应助摸鱼大王采纳,获得10
5秒前
6秒前
6秒前
marmota完成签到,获得积分10
6秒前
Orange应助洛城l采纳,获得10
7秒前
希望天下0贩的0应助HOPANG采纳,获得20
7秒前
lq完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
关而呀呀完成签到,获得积分10
9秒前
10秒前
10秒前
zyy关闭了zyy文献求助
10秒前
11秒前
12秒前
夜雨完成签到 ,获得积分10
12秒前
13秒前
Twonej应助xelloss采纳,获得10
13秒前
13秒前
fdx发布了新的文献求助10
14秒前
w_发布了新的文献求助10
15秒前
大模型应助愤怒的似狮采纳,获得10
16秒前
16秒前
科目三应助LZR采纳,获得10
16秒前
wei998完成签到,获得积分10
17秒前
linlin发布了新的文献求助10
17秒前
无花果应助馥馥采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165