HBPred: a tool to identify growth hormone-binding proteins

刀切重采样 计算机科学 支持向量机 人工智能 机器学习 特征选择 过度拟合 水准点(测量) 排名(信息检索) 数据挖掘 计算生物学 生物 数学 统计 地理 估计员 人工神经网络 大地测量学
作者
Hua Tang,Ya-Wei Zhao,Ping Zou,Chunmei Zhang,Rong Chen,Po Huang,Hao Lin
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:14 (8): 957-964 被引量:171
标识
DOI:10.7150/ijbs.24174
摘要

Hormone-binding protein (HBP) is a kind of soluble carrier protein and can selectively and non-covalently interact with hormone. HBP plays an important role in life growth, but its function is still unclear. Correct recognition of HBPs is the first step to further study their function and understand their biological process. However, it is difficult to correctly recognize HBPs from more and more proteins through traditional biochemical experiments because of high experimental cost and long experimental period. To overcome these disadvantages, we designed a computational method for identifying HBPs accurately in the study. At first, we collected HBP data from UniProt to establish a high-quality benchmark dataset. Based on the dataset, the dipeptide composition was extracted from HBP residue sequences. In order to find out the optimal features to provide key clues for HBP identification, the analysis of various (ANOVA) was performed for feature ranking. The optimal features were selected through the incremental feature selection strategy. Subsequently, the features were inputted into support vector machine (SVM) for prediction model construction. Jackknife cross-validation results showed that 88.6% HBPs and 81.3% non-HBPs were correctly recognized, suggesting that our proposed model was powerful. This study provides a new strategy to identify HBPs. Moreover, based on the proposed model, we established a webserver called HBPred, which could be freely accessed at http://lin-group.cn/server/HBPred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hoshi完成签到 ,获得积分10
1秒前
Le_long完成签到,获得积分10
2秒前
2秒前
Foremelon完成签到,获得积分10
3秒前
~静完成签到,获得积分10
3秒前
狒狒发布了新的文献求助10
4秒前
5秒前
wwwwyx完成签到,获得积分10
7秒前
风中冰香应助宣邹采纳,获得10
7秒前
changping应助ZHAYUE采纳,获得10
7秒前
吴律发布了新的文献求助10
7秒前
温柔的幻露完成签到,获得积分10
8秒前
赫连人杰完成签到,获得积分10
9秒前
10秒前
yu发布了新的文献求助10
10秒前
11秒前
可爱的函函应助Wsh采纳,获得10
11秒前
13秒前
三金发布了新的文献求助80
13秒前
MZ发布了新的文献求助10
14秒前
li完成签到 ,获得积分10
15秒前
hh发布了新的文献求助10
16秒前
16秒前
17秒前
kyrie发布了新的文献求助10
19秒前
20秒前
儒雅晓霜发布了新的文献求助10
20秒前
20秒前
li完成签到,获得积分10
20秒前
21秒前
liu发布了新的文献求助10
22秒前
22秒前
24秒前
跳跃毒娘完成签到,获得积分10
24秒前
nkym发布了新的文献求助10
25秒前
万能图书馆应助红红采纳,获得10
25秒前
万能图书馆应助lynch采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
跳跳发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210