ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System

计算机科学 深度学习 人工智能 控制(管理) 空间学习 实时计算 神经科学 心理学 海马体
作者
Fengxiao Tang,Bomin Mao,Zubair Md. Fadlullah,Jiajia Liu,Nei Kato
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 568-580 被引量:17
标识
DOI:10.1109/tsusc.2019.2929935
摘要

Deep learning has emerged as a popular Artificial Intelligence (AI) technique to make conventional cyber physical systems become intelligent and sustainable. Recently, deep learning has been widely used in the network domain. With the aid of powerful deep neural networks, the communication network can carry out packets forwarding actions intelligently to avoid possible failure and congestion. However, with the high computing cost and process limitation in only the static network scenario, the existing deep learning based network traffic control algorithms cannot satisfy the sustainable requirement of next generation large scale dynamic network. To conquer the existing problems, a novel spatial-temporal value network aided deep learning based intelligent traffic control algorithm referred as ST-DeLTA is proposed in this paper. In ST-DeLTA, the value matrix and spatial temporal training model (ST model) are employed to intelligently extract the spatial as well as temporal features of traffic patterns and make adaptive packets forwarding decision in large scale and dynamic networks. The mathematical analysis gives the computing cost reduction of our proposal, and the computer simulation demonstrates that our proposal has significantly better training and network performance compared with traditional algorithms in terms of training accuracy, transmission throughput, and average packets loss rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
善良身影完成签到,获得积分10
3秒前
天天快乐应助郭豪琪采纳,获得10
4秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
13679165979发布了新的文献求助10
6秒前
6秒前
Su发布了新的文献求助10
6秒前
6秒前
淡定的思松应助呆萌士晋采纳,获得10
6秒前
7秒前
8秒前
dilli完成签到 ,获得积分10
8秒前
cwy发布了新的文献求助10
10秒前
wz发布了新的文献求助10
10秒前
balzacsun发布了新的文献求助10
12秒前
JamesPei应助星星采纳,获得10
12秒前
13秒前
13秒前
laodie完成签到,获得积分10
14秒前
彭于晏应助ipeakkka采纳,获得10
14秒前
14秒前
敏感的芷发布了新的文献求助10
14秒前
susan发布了新的文献求助10
14秒前
15秒前
李爱国应助轻松的贞采纳,获得10
15秒前
wz完成签到,获得积分10
16秒前
子川完成签到 ,获得积分10
16秒前
怕孤独的鹭洋完成签到,获得积分10
16秒前
17秒前
耍酷的夏云完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824