ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System

计算机科学 深度学习 人工智能 控制(管理) 空间学习 实时计算 神经科学 心理学 海马体
作者
Fengxiao Tang,Bomin Mao,Zubair Md. Fadlullah,Jiajia Liu,Nei Kato
出处
期刊:IEEE transactions on sustainable computing [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 568-580 被引量:17
标识
DOI:10.1109/tsusc.2019.2929935
摘要

Deep learning has emerged as a popular Artificial Intelligence (AI) technique to make conventional cyber physical systems become intelligent and sustainable. Recently, deep learning has been widely used in the network domain. With the aid of powerful deep neural networks, the communication network can carry out packets forwarding actions intelligently to avoid possible failure and congestion. However, with the high computing cost and process limitation in only the static network scenario, the existing deep learning based network traffic control algorithms cannot satisfy the sustainable requirement of next generation large scale dynamic network. To conquer the existing problems, a novel spatial-temporal value network aided deep learning based intelligent traffic control algorithm referred as ST-DeLTA is proposed in this paper. In ST-DeLTA, the value matrix and spatial temporal training model (ST model) are employed to intelligently extract the spatial as well as temporal features of traffic patterns and make adaptive packets forwarding decision in large scale and dynamic networks. The mathematical analysis gives the computing cost reduction of our proposal, and the computer simulation demonstrates that our proposal has significantly better training and network performance compared with traditional algorithms in terms of training accuracy, transmission throughput, and average packets loss rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
维周之桢发布了新的文献求助10
3秒前
3秒前
小点点发布了新的文献求助20
3秒前
wanci应助XA采纳,获得10
3秒前
4秒前
hh完成签到,获得积分10
4秒前
HLR发布了新的文献求助10
5秒前
6秒前
An发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Wang Mu发布了新的文献求助10
7秒前
情怀应助欧耶采纳,获得10
8秒前
打打应助gg采纳,获得10
10秒前
iNk应助光亮的姝采纳,获得20
11秒前
维周之桢完成签到,获得积分10
11秒前
无限安蕾发布了新的文献求助10
11秒前
12秒前
Leexxxhaoo完成签到,获得积分10
13秒前
wanwan发布了新的文献求助10
14秒前
康康发布了新的文献求助10
16秒前
777发布了新的文献求助10
16秒前
17秒前
小古完成签到,获得积分20
18秒前
18秒前
宝海青发布了新的文献求助10
19秒前
王京文完成签到 ,获得积分10
20秒前
叶子发布了新的文献求助10
20秒前
华仔应助damnxas采纳,获得10
20秒前
Orange应助温婉的笑阳采纳,获得10
21秒前
XA发布了新的文献求助10
23秒前
田様应助求助采纳,获得10
23秒前
24秒前
大方大树发布了新的文献求助10
24秒前
24秒前
29秒前
小蘑菇应助追寻奇迹采纳,获得10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302000
求助须知:如何正确求助?哪些是违规求助? 2936557
关于积分的说明 8478065
捐赠科研通 2610335
什么是DOI,文献DOI怎么找? 1425076
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646456