Prediction Model of Cardiac Risk for Dental Extraction in Elderly Patients with Cardiovascular Diseases

医学 逻辑回归 人口 Lasso(编程语言) 内科学 算法 数学 环境卫生 计算机科学 万维网
作者
Min Tang,Ping Hu,Caofeng Wang,Chuangqi Yu,Jing Sheng,Shaojun Ma
出处
期刊:Gerontology [S. Karger AG]
卷期号:65 (6): 591-598 被引量:7
标识
DOI:10.1159/000497424
摘要

<b><i>Background:</i></b> With the rapidly increasing population of elderly people, dental extraction in elderly individuals with cardiovascular diseases (CVDs) has become quite common. The issue of how to assure the safety of elderly patients with CVDs undergoing dental extraction has perplexed dentists and internists for many years. And it is important to derive an appropriate risk prediction tool for this population. <b><i>Objectives:</i></b> The aim of this retrospective, observational study was to establish and validate a prediction model based on the random forest (RF) algorithm for the risk of cardiac complications of dental extraction in elderly patients with CVDs. <b><i>Methods:</i></b> Between August 2017 and May 2018, a total of 603 patients who fulfilled the inclusion criteria were used to create a training set. An independent test set contained 230 patients between June 2018 and July 2018. Data regarding clinical parameters, laboratory tests, clinical examinations before dental extraction, and 1-week follow-up were retrieved. Predictors were identified by using logistic regression (LR) with penalized LASSO (least absolute shrinkage and selection operator) variable selection. Then, a prediction model was constructed based on the RF algorithm by using a 5-fold cross-validation method. <b><i>Results:</i></b> The training set, based on 603 participants, including 282 men and 321 women, had an average participant age of 72.38 ± 8.31 years. Using feature selection methods, 11 predictors for risk of cardiac complications were screened out. When the RF model was constructed, its overall classification accuracy was 0.82 at the optimal cutoff value of 18.5%. In comparison to the LR model, the RF model showed a superior predictive performance. The AUROC (area under the receiver operating characteristic curve) scores of the RF and LR models were 0.83 and 0.80, respectively, in the independent test set. The AUPRC (area under the precision-recall curve) scores of the RF and LR models were 0.56 and 0.35, respectively, in the independent test set. <b><i>Conclusion:</i></b> The RF-based prediction model is expected to be applicable for preoperative clinical assessment for preventing cardiac complications in elderly patients with CVDs undergoing dental extraction. The findings may aid physicians and dentists in making more informed recommendations to prevent cardiac complications in this patient population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尚可发布了新的文献求助10
1秒前
3秒前
3秒前
张张张发布了新的文献求助20
3秒前
4秒前
4秒前
4秒前
科研小菜鸡完成签到,获得积分10
5秒前
5秒前
ymm完成签到,获得积分20
6秒前
6秒前
马某发布了新的文献求助10
6秒前
Anliks发布了新的文献求助10
6秒前
7秒前
MchemG应助sunshine采纳,获得10
7秒前
7秒前
7秒前
xiaoguai4545发布了新的文献求助20
7秒前
7秒前
辉hui发布了新的文献求助10
8秒前
2861542517发布了新的文献求助10
9秒前
温暖芸发布了新的文献求助10
9秒前
10秒前
酷波er应助FAN采纳,获得10
10秒前
xiaohhh完成签到,获得积分20
10秒前
yy发布了新的文献求助10
10秒前
活力芝麻发布了新的文献求助10
10秒前
cocolu应助陈印采纳,获得10
10秒前
yangjinru完成签到 ,获得积分10
10秒前
小鹿发布了新的文献求助10
11秒前
小程同学发布了新的文献求助10
12秒前
12秒前
野草发布了新的文献求助10
14秒前
holo发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135