材料科学
制作
钙钛矿(结构)
光伏
光伏系统
涂层
能量转换效率
纳米技术
太阳能电池
钙钛矿太阳能电池
光电子学
化学工程
工程类
电气工程
医学
病理
替代医学
标识
DOI:10.1038/s41578-019-0176-2
摘要
Since the report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and a stability of 500 h, intensive efforts have been made to increase the certified PCE, reaching 25.2% in 2019. The PCE of PSCs now exceeds that of conventional thin-film solar-cell technologies, and the rate at which this increase has been achieved is unprecedented in the history of photovoltaics. Moreover, the development of moisture-stable and heat-stable materials has increased the stability of PSCs. Small-area devices (<1 cm2) are typically fabricated using a spin-coating method; however, this approach may not be suitable for the preparation of the large-area (>100 cm2) substrates required for commercialization. Thus, materials and methods need to be developed for coating large-area PSCs. In this Review, we discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large-area coatings, and provide an overview of the methodologies for achieving high-efficiency perovskite solar modules. The scalable fabrication of perovskite solar cells and solar modules requires the development of new materials and coating methods. In this Review, we discuss solution-based and vapour-phase coating methods for large-area perovskite films and examine the progress in performance and the parameters affecting large-area coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI