Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram

肥厚性心肌病 医学 心脏病学 内科学 置信区间 卷积神经网络 心电图 心源性猝死 曲线下面积 人工智能 计算机科学
作者
Wei-Yin Ko,Konstantinos C. Siontis,Zachi I. Attia,Rickey E. Carter,Suraj Kapa,Steve R. Ommen,Steven J. Demuth,Michael J. Ackerman,Bernard J. Gersh,Adelaide M. Arruda‐Olson,Jeffrey B. Geske,Samuel J. Asirvatham,Francisco López-Jiménez,Rick A. Nishimura,Paul A. Friedman,Peter A. Noseworthy
出处
期刊:Journal of the American College of Cardiology [Elsevier]
卷期号:75 (7): 722-733 被引量:291
标识
DOI:10.1016/j.jacc.2019.12.030
摘要

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
1秒前
思源应助苹果向露采纳,获得10
2秒前
2秒前
李健应助happy采纳,获得10
2秒前
文献小白完成签到 ,获得积分10
3秒前
浮游应助激动的访波采纳,获得10
3秒前
bkagyin应助激动的访波采纳,获得10
3秒前
4秒前
可闲发布了新的文献求助10
5秒前
6秒前
行寂静行完成签到 ,获得积分10
7秒前
自觉语琴完成签到 ,获得积分10
8秒前
NMC发布了新的文献求助10
9秒前
共享精神应助小宇OvO采纳,获得10
10秒前
机灵毛豆完成签到 ,获得积分10
10秒前
刘清河发布了新的文献求助10
10秒前
小禾完成签到 ,获得积分10
11秒前
12秒前
zjy完成签到,获得积分10
12秒前
12秒前
13秒前
齐齐完成签到,获得积分20
13秒前
shr完成签到,获得积分10
14秒前
奥拉同学完成签到,获得积分10
15秒前
易水完成签到 ,获得积分10
15秒前
happy发布了新的文献求助10
15秒前
可闲完成签到,获得积分20
16秒前
18秒前
柚柚子完成签到,获得积分10
21秒前
精油完成签到,获得积分10
21秒前
23秒前
mr完成签到 ,获得积分10
24秒前
中论文呢发布了新的文献求助10
25秒前
25秒前
25秒前
感动的莞发布了新的文献求助10
26秒前
糜灭龙完成签到,获得积分10
29秒前
科研通AI6应助tong采纳,获得10
29秒前
小宇OvO发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499097
求助须知:如何正确求助?哪些是违规求助? 4596115
关于积分的说明 14452329
捐赠科研通 4529231
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465897
关于科研通互助平台的介绍 1438802