Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram

肥厚性心肌病 医学 心脏病学 内科学 置信区间 卷积神经网络 心电图 心源性猝死 曲线下面积 人工智能 计算机科学
作者
Wei-Yin Ko,Konstantinos C. Siontis,Zachi I. Attia,Rickey E. Carter,Suraj Kapa,Steve R. Ommen,Steven J. Demuth,Michael J. Ackerman,Bernard J. Gersh,Adelaide M. Arruda‐Olson,Jeffrey B. Geske,Samuel J. Asirvatham,Francisco López-Jiménez,Rick A. Nishimura,Paul A. Friedman,Peter A. Noseworthy
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:75 (7): 722-733 被引量:290
标识
DOI:10.1016/j.jacc.2019.12.030
摘要

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜子发布了新的文献求助10
刚刚
疯狂的绿蝶完成签到,获得积分10
1秒前
1秒前
乐乐应助许起眸采纳,获得10
2秒前
2秒前
杰~完成签到,获得积分10
3秒前
3秒前
领导范儿应助pbj采纳,获得10
3秒前
洛丶发布了新的文献求助10
3秒前
大胆的娩发布了新的文献求助10
4秒前
4秒前
干姜发布了新的文献求助10
5秒前
Wududu完成签到,获得积分10
5秒前
舒昀完成签到,获得积分10
6秒前
NicotineZen发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Leach完成签到 ,获得积分10
9秒前
三条馋猫完成签到,获得积分10
10秒前
脑洞疼应助Amanda采纳,获得10
11秒前
脑洞疼应助羊羊羊采纳,获得10
11秒前
11秒前
12秒前
路过人间完成签到,获得积分10
12秒前
Bagpipe完成签到 ,获得积分10
12秒前
12214发布了新的文献求助10
13秒前
Orange应助12采纳,获得10
14秒前
小舟潮完成签到,获得积分10
15秒前
大大怪完成签到 ,获得积分10
15秒前
MJX完成签到,获得积分10
15秒前
洛丶完成签到,获得积分20
17秒前
20秒前
22秒前
英俊的铭应助大胆的娩采纳,获得10
24秒前
25秒前
英姑应助糕糕采纳,获得10
25秒前
火星上白风完成签到,获得积分10
25秒前
26秒前
26秒前
意志力发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931