催化作用
化学
氨
氨生产
氮气
氮化物
空位缺陷
活化能
无机化学
金属
化学工程
物理化学
结晶学
有机化学
工程类
图层(电子)
作者
Tian‐Nan Ye,Sang‐Won Park,Yangfan Lu,Jiang Li,Masato Sasase,Masaaki Kitano,Hideo Hosono
摘要
Ammonia is one of the most important feedstocks for the production of fertilizer and as a potential energy carrier. Nitride compounds such as LaN have recently attracted considerable attention due to their nitrogen vacancy sites that can activate N2 for ammonia synthesis. Here, we propose a general rule for the design of nitride-based catalysts for ammonia synthesis, in which the nitrogen vacancy formation energy (ENV) dominates the catalytic performance. The relatively low ENV (ca. 1.3 eV) of CeN means it can serve as an efficient and stable catalyst upon Ni loading. The catalytic activity of Ni/CeN reached 6.5 mmol·g-1·h-1 with an effluent NH3 concentration (ENH3) of 0.45 vol %, reaching the thermodynamic equilibrium (ENH3 = 0.45 vol %) at 400 °C and 0.1 MPa, thereby circumventing the bottleneck for N2 activation on Ni metal with an extremely weak nitrogen binding energy. The activity far exceeds those for other Co- and Ni-based catalysts, and is even comparable to those for Ru-based catalysts. It was determined that CeN itself can produce ammonia without Ni-loading at almost the same activation energy. Kinetic analysis and isotope experiments combined with density functional theory (DFT) calculations indicate that the nitrogen vacancies in CeN can activate both N2 and H2 during the reaction, which accounts for the much higher catalytic performance than other reported nonloaded catalysts for ammonia synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI