UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning

干扰 发射机 强化学习 基站 波束赋形 发射机功率输出 弹道 计算机科学 实时计算 频道(广播) 无人机 人工智能 计算机网络 电信 遗传学 天文 生物 热力学 物理
作者
Yu Zhang,Zhiyu Mou,Feifei Gao,Jing Jiang,Ruijin Ding,Zhu Han
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 11599-11611 被引量:183
标识
DOI:10.1109/tvt.2020.3014788
摘要

Unmanned aerial vehicles (UAVs) can be employed as aerial base stations to support communication for the ground users (GUs). However, the aerial-to-ground (A2G) channel link is dominated by line-of-sight (LoS) due to the high flying altitude, which is easily wiretapped by the ground eavesdroppers (GEs). In this case, a single UAV has limited maneuvering capacity to obtain the desired secure rate in the presence of multiple eavesdroppers. In this paper, we propose a cooperative jamming approach by letting UAV jammers help the UAV transmitter defend against GEs. To be specific, the UAV transmitter sends the confidential information to GUs, and the UAV jammers send the artificial noise signals to the GEs by 3D beamforming. We propose a multi-agent deep reinforcement learning (MADRL) approach, i.e., multi-agent deep deterministic policy gradient (MADDPG) to maximize the secure capacity by jointly optimizing the trajectory of UAVs, the transmit power from UAV transmitter and the jamming power from the UAV jammers. The MADDPG algorithm adopts centralized training and distributed execution. The simulation results show the MADRL method can realize the joint trajectory design of UAVs and achieve good performance. To improve the learning efficiency and convergence, we further propose a continuous action attention MADDPG (CAA-MADDPG) method, where the agent learns to pay attention to the actions and observations of other agents that are more relevant with it. From the simulation results, the rewards performance of CAA-MADDPG is better than the MADDPG without attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yanzitian1023发布了新的文献求助10
2秒前
翼点发布了新的文献求助10
2秒前
chanyi发布了新的文献求助10
3秒前
当当发布了新的文献求助10
4秒前
liu完成签到 ,获得积分10
4秒前
Jessie完成签到,获得积分10
5秒前
5秒前
6秒前
8秒前
8秒前
Ava应助杨66采纳,获得10
11秒前
研友_LJGoXn发布了新的文献求助10
11秒前
爆米花应助LL采纳,获得10
12秒前
12秒前
脑洞疼应助麦尔哈巴采纳,获得10
12秒前
Paddi发布了新的文献求助10
13秒前
QI发布了新的文献求助10
13秒前
美好斓发布了新的文献求助10
13秒前
无花果应助曾经二娘采纳,获得10
13秒前
别让我误会完成签到 ,获得积分10
13秒前
英勇捕完成签到 ,获得积分10
16秒前
peach完成签到,获得积分20
17秒前
17秒前
竹筏过海应助美好斓采纳,获得30
19秒前
19秒前
20秒前
21秒前
杨66发布了新的文献求助10
22秒前
失忆症丿完成签到 ,获得积分10
23秒前
潇散发布了新的文献求助10
23秒前
23秒前
纯真冰蝶完成签到 ,获得积分10
24秒前
24秒前
yhz_zjut_suda发布了新的文献求助10
25秒前
25秒前
纯真冰蝶发布了新的文献求助10
26秒前
小小小柒完成签到 ,获得积分10
26秒前
Ricewind发布了新的文献求助20
27秒前
风中亦旋完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196