A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations

计算机科学 排队 启发式 车辆路径问题 排队论 数学优化 布线(电子设计自动化) 运筹学 模拟 实时计算 计算机网络 数学 人工智能
作者
Merve Keskin,Bülent Çatay,Gilbert Laporte
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:125: 105060-105060 被引量:115
标识
DOI:10.1016/j.cor.2020.105060
摘要

The Electric Vehicle Routing Problem with Time Windows and Stochastic Waiting Times at Recharging Stations is an extension of the Electric Vehicle Routing Problem with Time Windows where the electric vehicles (EVs) may wait in a queue before the recharging service starts due to limited number of chargers available at stations. Since the customers and the depot are associated with time windows, long waiting times at the stations in addition to the recharging times may cause disruptions in logistics operations. To solve this problem, we present a two-stage simulation-based heuristic using Adaptive Large Neighborhood Search (ALNS). In the first stage, the routes are determined using expected waiting time values at the stations. While the vehicles are following their tours, upon arrival at the stations, their queueing times are revealed. If the actual waiting time at a station exceeds its expected value, the time windows of the subsequent customers on the route may be violated. In this case, the second stage corrects the infeasible solution by penalizing the time-window violations and late returns to the depot. The proposed ALNS applies several destroy and repair operators adapted for this specific problem. In addition, we propose a new adaptive mechanism to tune the constant waiting times used in finding the first-stage solution. To investigate the performance of the proposed approach and the influence of the stochastic waiting times on routing decisions and costs, we perform an experimental study using both small and large instances from the literature. The results show that the proposed simulation-based solution approach provides good solutions both in terms of quality and of computational time. It is shown that the uncertainty in waiting times may have significant impact on route plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坐宝马吃地瓜完成签到 ,获得积分10
1秒前
SciGPT应助Strike采纳,获得10
1秒前
自强不息完成签到,获得积分10
1秒前
2秒前
czq发布了新的文献求助30
2秒前
望春风完成签到,获得积分10
2秒前
2秒前
huangJP完成签到,获得积分10
3秒前
情怀应助Tira采纳,获得10
3秒前
王阳洋完成签到,获得积分10
3秒前
3秒前
4秒前
通~发布了新的文献求助10
4秒前
李爱国应助非常可爱采纳,获得20
4秒前
4秒前
5秒前
阿敏发布了新的文献求助10
6秒前
JamesPei应助小憩采纳,获得10
6秒前
jkhjkhj发布了新的文献求助10
6秒前
风中香之发布了新的文献求助30
6秒前
忍冬完成签到,获得积分10
7秒前
Zhong发布了新的文献求助10
8秒前
胡图图关注了科研通微信公众号
8秒前
爱吃泡芙发布了新的文献求助20
8秒前
xiuxiu_27发布了新的文献求助10
8秒前
小书包完成签到,获得积分10
9秒前
xxx发布了新的文献求助10
9秒前
直率的钢铁侠完成签到,获得积分10
9秒前
大模型应助Elaine采纳,获得10
10秒前
花痴的骁完成签到 ,获得积分10
10秒前
F冯发布了新的文献求助10
11秒前
干卿完成签到,获得积分10
11秒前
11秒前
共享精神应助Zhong采纳,获得10
11秒前
le000000完成签到,获得积分10
12秒前
12秒前
爱笑向松完成签到 ,获得积分10
12秒前
华仔应助钟是一梦采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740