CANCELLATION OF MOTION ARTIFACT NOISE AND POWER LINE INTERFERENCE IN ECG USING ADAPTIVE FILTERS

自适应滤波器 噪音(视频) 递归最小平方滤波器 计算机科学 工件(错误) 最小均方滤波器 干扰(通信) 滤波器(信号处理) 主动噪声控制 噪声地板 噪声功率 算法 降噪 噪声测量 控制理论(社会学) 人工智能 功率(物理) 电信 计算机视觉 物理 量子力学 图像(数学) 频道(广播) 控制(管理)
作者
Imteyaz Ahmad,Farhad Ansari,Utpal Dey
出处
期刊:International journal of electronic signal and systems [Interscience Research Network]
卷期号:: 297-299 被引量:3
标识
DOI:10.47893/ijess.2014.1189
摘要

Background: The electrocardiogram(ECG) has the considerable diagnostic significance, and applications of ECG monitoring are diverse and in wide use. Noises that commonly disturb the basic electrocardiogram are power line interference(PLI), instrumentation noise, external electromagnetic field interference, noise due to random body movements and respiration movements. These noises can be classified according to their frequency content. It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. It is difficult to apply filters with fixed filter co-efficients to reduce these noise. Adaptive filter technique is required to overcome this problem as the filter coefficients can be varied to track the dynamic variations of the signals. Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm are applied to noisy ECG to reduce 50 Hz power line noise and motion artifact noise. Method: ECG signal is taken from physionet database. A ECG signal (without noise) was mixed with constant 0.1 mVp-p 50 Hz interference and motion artifact noise processed with Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm. Simulation results are also shown. Performance of filters are analyzed based on SNR and MSE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多少少忖测的情完成签到,获得积分10
刚刚
科研通AI5应助兴奋的宛白采纳,获得10
1秒前
2秒前
zhanlonglsj发布了新的文献求助10
2秒前
2秒前
芍药完成签到,获得积分10
2秒前
Yogita完成签到,获得积分10
3秒前
DoctorYan完成签到,获得积分10
3秒前
Adler完成签到,获得积分10
3秒前
4秒前
坐宝马吃地瓜完成签到 ,获得积分10
4秒前
SciGPT应助Strike采纳,获得10
4秒前
自强不息完成签到,获得积分10
4秒前
5秒前
czq发布了新的文献求助30
5秒前
望春风完成签到,获得积分10
5秒前
5秒前
huangJP完成签到,获得积分10
6秒前
情怀应助Tira采纳,获得10
6秒前
王阳洋完成签到,获得积分10
6秒前
6秒前
7秒前
通~发布了新的文献求助10
7秒前
李爱国应助非常可爱采纳,获得20
7秒前
7秒前
8秒前
阿敏发布了新的文献求助10
9秒前
JamesPei应助小憩采纳,获得10
9秒前
jkhjkhj发布了新的文献求助10
9秒前
风中香之发布了新的文献求助30
9秒前
忍冬完成签到,获得积分10
10秒前
Zhong发布了新的文献求助10
11秒前
胡图图关注了科研通微信公众号
11秒前
爱吃泡芙发布了新的文献求助20
11秒前
xiuxiu_27发布了新的文献求助10
11秒前
小书包完成签到,获得积分10
12秒前
xxx发布了新的文献求助10
12秒前
直率的钢铁侠完成签到,获得积分10
12秒前
大模型应助Elaine采纳,获得10
13秒前
花痴的骁完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740