Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory

计算机科学 声誉 激励 移动设备 机器学习 信任管理(信息系统) 杠杆(统计) 计算机安全 人工智能 知识管理 万维网 社会科学 社会学 经济 微观经济学
作者
Jiawen Kang,Zehui Xiong,Dusit Niyato,Shengli Xie,Junshan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (6): 10700-10714 被引量:731
标识
DOI:10.1109/jiot.2019.2940820
摘要

Federated learning is an emerging machine learning technique that enables distributed model training using local datasets from large-scale nodes, e.g., mobile devices, but shares only model updates without uploading the raw training data. This technique provides a promising privacy preservation for mobile devices while simultaneously ensuring high learning performance. The majority of existing work has focused on designing advanced learning algorithms with an aim to achieve better learning performance. However, the challenges, such as incentive mechanisms for participating in training and worker (i.e., mobile devices) selection schemes for reliable federated learning, have not been explored yet. These challenges have hindered the widespread adoption of federated learning. To address the above challenges, in this article, we first introduce reputation as the metric to measure the reliability and trustworthiness of the mobile devices. We then design a reputation-based worker selection scheme for reliable federated learning by using a multiweight subjective logic model. We also leverage the blockchain to achieve secure reputation management for workers with nonrepudiation and tamper-resistance properties in a decentralized manner. Moreover, we propose an effective incentive mechanism combining reputation with contract theory to motivate high-reputation mobile devices with high-quality data to participate in model learning. Numerical results clearly indicate that the proposed schemes are efficient for reliable federated learning in terms of significantly improving the learning accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助wallonce采纳,获得10
1秒前
1秒前
林慕然2023发布了新的文献求助10
2秒前
羊觅夏完成签到,获得积分10
2秒前
3秒前
4秒前
羊觅夏发布了新的文献求助30
5秒前
ll完成签到,获得积分20
6秒前
7秒前
9秒前
共享精神应助笙木采纳,获得10
9秒前
10秒前
无花果应助mayberichard采纳,获得10
13秒前
14秒前
罗_举报kunkun小王求助涉嫌违规
15秒前
爱听歌傲玉完成签到,获得积分10
16秒前
ccclau发布了新的文献求助30
16秒前
16秒前
17秒前
泡泡完成签到,获得积分10
17秒前
情怀应助CHH采纳,获得10
18秒前
方园完成签到,获得积分10
18秒前
19秒前
SC30发布了新的文献求助10
19秒前
wallonce发布了新的文献求助10
21秒前
22秒前
23秒前
笙木发布了新的文献求助10
25秒前
25秒前
ccclau完成签到,获得积分10
25秒前
SC30完成签到,获得积分10
26秒前
大鲸完成签到,获得积分10
26秒前
锁模发布了新的文献求助10
27秒前
大贺呀发布了新的文献求助10
29秒前
29秒前
科研通AI2S应助hehe采纳,获得10
30秒前
31秒前
酸菜炖粉条完成签到,获得积分10
32秒前
32秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483