Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory

计算机科学 声誉 激励 移动设备 机器学习 信任管理(信息系统) 杠杆(统计) 计算机安全 人工智能 知识管理 万维网 社会科学 社会学 经济 微观经济学
作者
Jiawen Kang,Zehui Xiong,Dusit Niyato,Shengli Xie,Junshan Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (6): 10700-10714 被引量:731
标识
DOI:10.1109/jiot.2019.2940820
摘要

Federated learning is an emerging machine learning technique that enables distributed model training using local datasets from large-scale nodes, e.g., mobile devices, but shares only model updates without uploading the raw training data. This technique provides a promising privacy preservation for mobile devices while simultaneously ensuring high learning performance. The majority of existing work has focused on designing advanced learning algorithms with an aim to achieve better learning performance. However, the challenges, such as incentive mechanisms for participating in training and worker (i.e., mobile devices) selection schemes for reliable federated learning, have not been explored yet. These challenges have hindered the widespread adoption of federated learning. To address the above challenges, in this article, we first introduce reputation as the metric to measure the reliability and trustworthiness of the mobile devices. We then design a reputation-based worker selection scheme for reliable federated learning by using a multiweight subjective logic model. We also leverage the blockchain to achieve secure reputation management for workers with nonrepudiation and tamper-resistance properties in a decentralized manner. Moreover, we propose an effective incentive mechanism combining reputation with contract theory to motivate high-reputation mobile devices with high-quality data to participate in model learning. Numerical results clearly indicate that the proposed schemes are efficient for reliable federated learning in terms of significantly improving the learning accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助淡淡夕阳采纳,获得10
1秒前
请叫我风吹麦浪应助刘硕采纳,获得10
2秒前
2秒前
英姑应助猪猪侠采纳,获得10
3秒前
李_小_八完成签到,获得积分10
3秒前
竹筏过海应助甜蜜的翠柏采纳,获得30
3秒前
佳佳应助陈林的爹采纳,获得10
3秒前
山林完成签到,获得积分10
5秒前
景三完成签到 ,获得积分10
6秒前
dudu发布了新的文献求助10
6秒前
自然垣完成签到,获得积分20
7秒前
打打应助顺心的面包采纳,获得10
8秒前
9秒前
上官若男应助abuall采纳,获得10
9秒前
小马甲应助轻松的剑采纳,获得10
9秒前
刘硕完成签到,获得积分20
10秒前
陈林的爹完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
辉夜折影完成签到,获得积分10
11秒前
静静完成签到,获得积分10
12秒前
Sally完成签到,获得积分10
12秒前
鼓励男孩发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助小臭屁采纳,获得10
13秒前
orixero应助刘嘻嘻采纳,获得10
14秒前
chengzhiliu29发布了新的文献求助20
16秒前
半夏完成签到,获得积分10
16秒前
18秒前
李爱国应助safire采纳,获得10
18秒前
科研通AI2S应助开心的桔子采纳,获得10
18秒前
19秒前
果汁关注了科研通微信公众号
21秒前
21秒前
小晓晓发布了新的文献求助10
22秒前
smottom应助yiling采纳,获得10
23秒前
一直发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511908
关于积分的说明 11160656
捐赠科研通 3246646
什么是DOI,文献DOI怎么找? 1793433
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403