Three-dimensional coordinate measurement algorithm by optimizing BP neural network based on GA

坐标系 坐标空间 人工神经网络 职位(财务) 球坐标系 算法 坐标下降 计算机科学 空间参考系 失真(音乐) 遗传算法 椭球坐标系 数学 人工智能 几何学 放大器 带宽(计算) 经济 机器学习 计算机网络 财务
作者
Xiaohong Lü,Yongquan Wang,Jie Li,Yang Zhou,Zongjin Ren,Steven Y. Liang
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:36 (6): 2066-2083 被引量:15
标识
DOI:10.1108/ec-09-2018-0410
摘要

Purpose The purpose of this paper is to solve the problem that the analytic solution model of spatial three-dimensional coordinate measuring system based on dual-position sensitive detector (PSD) is complex and its precision is not high. Design/methodology/approach A new three-dimensional coordinate measurement algorithm by optimizing back propagation (BP) neural network based on genetic algorithm (GA) is proposed. The mapping relation between three-dimensional coordinates of space points in the world coordinate system and light spot coordinates formed on dual-PSD has been built and applied to the prediction of three-dimensional coordinates of space points. Findings The average measurement error of three-dimensional coordinates of space points at three-dimensional coordinate measuring system based on dual-PSD based on GA-BP neural network is relatively small. This method does not require considering the lens distortion and the non-linearity of PSD. It has simple structure and high precision and is suitable for three-dimensional coordinate measurement of space points. Originality/value A new three-dimensional coordinate measurement algorithm by optimizing BP neural network based on GA is proposed to predict three-dimensional coordinates of space points formed on three-dimensional coordinate measuring system based on dual-PSD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助yu采纳,获得10
刚刚
SciGPT应助1592611829采纳,获得10
1秒前
充电宝应助zlh采纳,获得10
1秒前
2秒前
英勇的芝麻完成签到,获得积分10
2秒前
badada发布了新的文献求助10
2秒前
2秒前
Novoa应助Lasse采纳,获得10
3秒前
3秒前
3秒前
4秒前
安静羿关注了科研通微信公众号
5秒前
Sakura完成签到 ,获得积分10
5秒前
Vince完成签到,获得积分10
5秒前
6秒前
6秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
123完成签到 ,获得积分10
7秒前
老迟到的冬瓜完成签到,获得积分10
7秒前
Melody完成签到,获得积分10
7秒前
7秒前
Jasper应助愉快的莹采纳,获得10
7秒前
badada完成签到,获得积分10
7秒前
Bao_o_o完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
笨蛋小章完成签到,获得积分10
10秒前
10秒前
朱子煊发布了新的文献求助10
10秒前
DNA完成签到,获得积分10
10秒前
梅菜菜发布了新的文献求助10
10秒前
yzz发布了新的文献求助10
10秒前
领导范儿应助duoduo7采纳,获得10
10秒前
CipherSage应助sunshine采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791