亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Appointment Scheduling for a Health Care Facility with Series Patients

计算机科学 调度(生产过程) 收入 人员配备 作业车间调度 数学优化 运营管理 运筹学 医学 财务 数学 业务 地铁列车时刻表 经济 操作系统 护理部
作者
Siyun Yu,Vidyadhar G. Kulkarni,Vinayak Deshpande
出处
期刊:Production and Operations Management [Wiley]
卷期号:29 (2): 388-409 被引量:26
标识
DOI:10.1111/poms.13117
摘要

This study focuses on determining the appointment scheduling for healthcare facilities with series patients. “Series” patients are patients who are scheduled for a series of appointments instead of a single appointment. Examples of healthcare services with series patients include radiotherapy/chemotherapy for cancer, physical therapy, kidney dialysis, diabetes treatment, etc. The aim of this study is to design appointment scheduling policies taking into account revenues per service per patient, costs of staffing, overtime, overbooking and delay. The appointment scheduling problem is formulated using an MDP model. However, due to the huge state space, computing the optimal policy is impractical. Hence, we propose the Index Policy (IP) based on a one‐step policy improvement algorithm applied to the MDP model. We study a further simplification obtained by approximating the distribution of the number of patient visits by a Geometric distribution. A key analytical contribution is to prove the MDP to be a uni‐chain, which implies that there exists an optimal policy that maximizes the long‐run average profit. We also find that the IP provides a significant improvement over the other policies. Especially with the Geometric approximation, the IP requires minimal effort in implementing, and works almost as well. To test the effectiveness of our proposed IP in a real‐world setting, we use the data from a local physical therapy center to compare its performance with two other commonly used policies, namely, the Next Available Day Policy and the Shortest Queue Policy. We recommend the IP with Geometric approximation for series patients’ scheduling, which is computationally efficient and can significantly increases profits by incorporating the series feature of the patients’ appointments. Finally, we provide analysis that incorporates several practical considerations such as accounting for patient heterogeneity in number of visits and inter‐visit times, the option to reject new patients when the system is at full capacity, and incorporating patients with known number of visits at the time of the scheduling decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助顺心的南蕾采纳,获得10
5秒前
huhu完成签到,获得积分10
24秒前
37秒前
顺心的南蕾完成签到,获得积分10
39秒前
42秒前
45秒前
嘟嘟嘟嘟发布了新的文献求助10
49秒前
56秒前
转转发布了新的文献求助10
56秒前
科研通AI6.1应助lanxinyue采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
小孙完成签到,获得积分10
1分钟前
碗碗完成签到,获得积分10
1分钟前
英俊的铭应助转转采纳,获得10
2分钟前
2分钟前
默笙完成签到 ,获得积分10
3分钟前
圆圆完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
冬冬完成签到,获得积分10
3分钟前
粽子完成签到,获得积分10
3分钟前
3分钟前
Kathy发布了新的文献求助10
4分钟前
科研肥料发布了新的文献求助10
4分钟前
科研肥料完成签到,获得积分10
4分钟前
4分钟前
Kathy完成签到,获得积分10
4分钟前
4分钟前
转转发布了新的文献求助10
4分钟前
xmsyq完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764249
求助须知:如何正确求助?哪些是违规求助? 5549451
关于积分的说明 15406029
捐赠科研通 4899537
什么是DOI,文献DOI怎么找? 2635757
邀请新用户注册赠送积分活动 1583901
关于科研通互助平台的介绍 1539077