Appointment Scheduling for a Health Care Facility with Series Patients

计算机科学 调度(生产过程) 收入 人员配备 作业车间调度 数学优化 运营管理 运筹学 医学 财务 数学 业务 地铁列车时刻表 经济 操作系统 护理部
作者
Siyun Yu,Vidyadhar G. Kulkarni,Vinayak Deshpande
出处
期刊:Production and Operations Management [Wiley]
卷期号:29 (2): 388-409 被引量:26
标识
DOI:10.1111/poms.13117
摘要

This study focuses on determining the appointment scheduling for healthcare facilities with series patients. “Series” patients are patients who are scheduled for a series of appointments instead of a single appointment. Examples of healthcare services with series patients include radiotherapy/chemotherapy for cancer, physical therapy, kidney dialysis, diabetes treatment, etc. The aim of this study is to design appointment scheduling policies taking into account revenues per service per patient, costs of staffing, overtime, overbooking and delay. The appointment scheduling problem is formulated using an MDP model. However, due to the huge state space, computing the optimal policy is impractical. Hence, we propose the Index Policy (IP) based on a one‐step policy improvement algorithm applied to the MDP model. We study a further simplification obtained by approximating the distribution of the number of patient visits by a Geometric distribution. A key analytical contribution is to prove the MDP to be a uni‐chain, which implies that there exists an optimal policy that maximizes the long‐run average profit. We also find that the IP provides a significant improvement over the other policies. Especially with the Geometric approximation, the IP requires minimal effort in implementing, and works almost as well. To test the effectiveness of our proposed IP in a real‐world setting, we use the data from a local physical therapy center to compare its performance with two other commonly used policies, namely, the Next Available Day Policy and the Shortest Queue Policy. We recommend the IP with Geometric approximation for series patients’ scheduling, which is computationally efficient and can significantly increases profits by incorporating the series feature of the patients’ appointments. Finally, we provide analysis that incorporates several practical considerations such as accounting for patient heterogeneity in number of visits and inter‐visit times, the option to reject new patients when the system is at full capacity, and incorporating patients with known number of visits at the time of the scheduling decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安安发布了新的文献求助10
1秒前
社会主义接班人完成签到 ,获得积分10
1秒前
2秒前
2秒前
还减肥呢完成签到 ,获得积分10
3秒前
3秒前
YX发布了新的文献求助10
4秒前
Ziang_Liu完成签到 ,获得积分10
4秒前
可爱的函函应助yaoyao采纳,获得10
4秒前
美好的邴完成签到 ,获得积分10
5秒前
典雅的幼枫关注了科研通微信公众号
5秒前
情怀应助王晓婷采纳,获得10
5秒前
5秒前
窝窝头完成签到 ,获得积分10
7秒前
传奇3应助YX采纳,获得10
9秒前
水煮牛牛完成签到,获得积分10
9秒前
Criminology34应助anan采纳,获得10
10秒前
11秒前
稳重的凡桃完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
踏实白昼发布了新的文献求助10
12秒前
千珏关注了科研通微信公众号
14秒前
vagary完成签到,获得积分10
15秒前
15秒前
15秒前
Jasper应助lwl采纳,获得10
16秒前
17秒前
漂亮的寄真完成签到,获得积分10
17秒前
18秒前
背后的语海完成签到 ,获得积分10
19秒前
19秒前
淼焱发布了新的文献求助10
19秒前
20秒前
科研通AI6.1应助zbzfp采纳,获得10
21秒前
txxy发布了新的文献求助10
21秒前
21秒前
曦越完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778805
求助须知:如何正确求助?哪些是违规求助? 5643873
关于积分的说明 15450364
捐赠科研通 4910324
什么是DOI,文献DOI怎么找? 2642617
邀请新用户注册赠送积分活动 1590360
关于科研通互助平台的介绍 1544705