亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Appointment Scheduling for a Health Care Facility with Series Patients

计算机科学 调度(生产过程) 收入 人员配备 作业车间调度 数学优化 运营管理 运筹学 医学 财务 数学 业务 地铁列车时刻表 经济 操作系统 护理部
作者
Siyun Yu,Vidyadhar G. Kulkarni,Vinayak Deshpande
出处
期刊:Production and Operations Management [Wiley]
卷期号:29 (2): 388-409 被引量:26
标识
DOI:10.1111/poms.13117
摘要

This study focuses on determining the appointment scheduling for healthcare facilities with series patients. “Series” patients are patients who are scheduled for a series of appointments instead of a single appointment. Examples of healthcare services with series patients include radiotherapy/chemotherapy for cancer, physical therapy, kidney dialysis, diabetes treatment, etc. The aim of this study is to design appointment scheduling policies taking into account revenues per service per patient, costs of staffing, overtime, overbooking and delay. The appointment scheduling problem is formulated using an MDP model. However, due to the huge state space, computing the optimal policy is impractical. Hence, we propose the Index Policy (IP) based on a one‐step policy improvement algorithm applied to the MDP model. We study a further simplification obtained by approximating the distribution of the number of patient visits by a Geometric distribution. A key analytical contribution is to prove the MDP to be a uni‐chain, which implies that there exists an optimal policy that maximizes the long‐run average profit. We also find that the IP provides a significant improvement over the other policies. Especially with the Geometric approximation, the IP requires minimal effort in implementing, and works almost as well. To test the effectiveness of our proposed IP in a real‐world setting, we use the data from a local physical therapy center to compare its performance with two other commonly used policies, namely, the Next Available Day Policy and the Shortest Queue Policy. We recommend the IP with Geometric approximation for series patients’ scheduling, which is computationally efficient and can significantly increases profits by incorporating the series feature of the patients’ appointments. Finally, we provide analysis that incorporates several practical considerations such as accounting for patient heterogeneity in number of visits and inter‐visit times, the option to reject new patients when the system is at full capacity, and incorporating patients with known number of visits at the time of the scheduling decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助读书的时候采纳,获得10
11秒前
科研通AI6.1应助任性学姐采纳,获得10
14秒前
KUIWU发布了新的文献求助10
18秒前
五五完成签到 ,获得积分10
35秒前
领导范儿应助小小K采纳,获得10
35秒前
深情安青应助肉肉采纳,获得10
35秒前
43秒前
43秒前
科研通AI6.1应助hu970采纳,获得30
43秒前
46秒前
小小K发布了新的文献求助10
47秒前
任性学姐发布了新的文献求助10
49秒前
肉肉发布了新的文献求助10
50秒前
53秒前
54秒前
56秒前
hu970发布了新的文献求助30
58秒前
火鸡味锅巴完成签到 ,获得积分10
1分钟前
abc应助liyuling采纳,获得10
1分钟前
howgoods完成签到 ,获得积分10
1分钟前
爱自己的宇宙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
温暖听兰发布了新的文献求助10
1分钟前
MGraceLi_sci完成签到,获得积分10
1分钟前
修辛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
桐桐应助任性学姐采纳,获得10
1分钟前
脑洞疼应助任性学姐采纳,获得10
1分钟前
852应助任性学姐采纳,获得10
1分钟前
桐桐应助任性学姐采纳,获得10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
桐桐应助任性学姐采纳,获得10
1分钟前
隐形曼青应助任性学姐采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527