A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

手势 可穿戴计算机 手势识别 计算机科学 人工智能 肌电图 可穿戴技术 计算机视觉 人机交互 语音识别 嵌入式系统 物理医学与康复 医学
作者
Ali Moin,Andy Zhou,Abbas Rahimi,Alisha Menon,Simone Benatti,George Alexandrov,Senam Tamakloe,Jonathan Ting,Natasha A. D. Yamamoto,Yasser Khan,Fred Burghardt,Luca Benini,Ana Claudia Arias,Jan M. Rabaey
出处
期刊:Nature electronics [Springer Nature]
卷期号:4 (1): 54-63 被引量:516
标识
DOI:10.1038/s41928-020-00510-8
摘要

Wearable devices that monitor muscle activity based on surface electromyography could be of use in the development of hand gesture recognition applications. Such devices typically use machine-learning models, either locally or externally, for gesture classification. However, most devices with local processing cannot offer training and updating of the machine-learning model during use, resulting in suboptimal performance under practical conditions. Here we report a wearable surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities. Our system implements a neuro-inspired hyperdimensional computing algorithm locally for real-time gesture classification, as well as model training and updating under variable conditions such as different arm positions and sensor replacement. The system can classify 13 hand gestures with 97.12% accuracy for two participants when training with a single trial per gesture. A high accuracy (92.87%) is preserved on expanding to 21 gestures, and accuracy is recovered by 9.5% by implementing model updates in response to varying conditions, without additional computation on an external device. A surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities can classify human gestures in real time and with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空白发布了新的文献求助10
1秒前
KK完成签到,获得积分10
1秒前
1秒前
1秒前
朴素山兰发布了新的文献求助10
1秒前
2秒前
是江江哥啊完成签到,获得积分10
2秒前
科研通AI2S应助朽木采纳,获得10
2秒前
张怡凯完成签到 ,获得积分10
3秒前
Wang完成签到 ,获得积分20
3秒前
3秒前
欣慰人生发布了新的文献求助10
3秒前
wocala完成签到,获得积分10
3秒前
飞龙爵士发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
浮游应助浮浮世世采纳,获得10
5秒前
在水一方应助局内人采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
斌城完成签到,获得积分10
8秒前
8秒前
drs发布了新的文献求助10
8秒前
lizi发布了新的文献求助10
9秒前
9秒前
9秒前
GREENP完成签到,获得积分10
10秒前
梅倪发布了新的文献求助10
10秒前
善学以致用应助lmg采纳,获得10
10秒前
范欣雨发布了新的文献求助10
11秒前
M_完成签到,获得积分10
11秒前
12秒前
12秒前
alala发布了新的文献求助10
13秒前
LXR发布了新的文献求助10
13秒前
xiaobai完成签到,获得积分10
13秒前
脑洞疼应助乐观天磊采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329006
求助须知:如何正确求助?哪些是违规求助? 4468593
关于积分的说明 13905951
捐赠科研通 4361665
什么是DOI,文献DOI怎么找? 2395876
邀请新用户注册赠送积分活动 1389356
关于科研通互助平台的介绍 1360146