A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

手势 可穿戴计算机 手势识别 计算机科学 人工智能 肌电图 可穿戴技术 计算机视觉 人机交互 语音识别 嵌入式系统 物理医学与康复 医学
作者
Ali Moin,Andy Zhou,Abbas Rahimi,Alisha Menon,Simone Benatti,George Alexandrov,Senam Tamakloe,Jonathan Ting,Natasha A. D. Yamamoto,Yasser Khan,Fred Burghardt,Luca Benini,Ana Claudia Arias,Jan M. Rabaey
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:4 (1): 54-63 被引量:474
标识
DOI:10.1038/s41928-020-00510-8
摘要

Wearable devices that monitor muscle activity based on surface electromyography could be of use in the development of hand gesture recognition applications. Such devices typically use machine-learning models, either locally or externally, for gesture classification. However, most devices with local processing cannot offer training and updating of the machine-learning model during use, resulting in suboptimal performance under practical conditions. Here we report a wearable surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities. Our system implements a neuro-inspired hyperdimensional computing algorithm locally for real-time gesture classification, as well as model training and updating under variable conditions such as different arm positions and sensor replacement. The system can classify 13 hand gestures with 97.12% accuracy for two participants when training with a single trial per gesture. A high accuracy (92.87%) is preserved on expanding to 21 gestures, and accuracy is recovered by 9.5% by implementing model updates in response to varying conditions, without additional computation on an external device. A surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities can classify human gestures in real time and with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GalaxyKe发布了新的文献求助10
刚刚
不秃的卤蛋完成签到,获得积分10
刚刚
852应助酷酷剑通采纳,获得10
2秒前
4秒前
ccrr完成签到 ,获得积分10
4秒前
4秒前
5秒前
7秒前
小郭发布了新的文献求助10
8秒前
9秒前
9秒前
贝涛发布了新的文献求助10
14秒前
所所应助科研小菜鸡采纳,获得10
14秒前
复原乳完成签到,获得积分10
14秒前
初夏发布了新的文献求助10
16秒前
18秒前
传奇3应助88C真是太神奇啦采纳,获得10
18秒前
在水一方应助茵垂丝丁采纳,获得10
19秒前
ANG完成签到 ,获得积分10
20秒前
pluto应助mmyhn采纳,获得10
23秒前
XxxxxxG发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
26秒前
善学以致用应助ljy采纳,获得10
28秒前
28秒前
29秒前
茵垂丝丁发布了新的文献求助10
30秒前
居星辰发布了新的文献求助10
30秒前
hellohi完成签到,获得积分10
30秒前
哥哥哥发布了新的文献求助10
30秒前
搜集达人应助Qiaoclin采纳,获得10
31秒前
默默地读文献应助en采纳,获得10
31秒前
王文静应助XxxxxxG采纳,获得10
32秒前
33秒前
33秒前
momo完成签到,获得积分10
33秒前
科研通AI5应助小超人哈里采纳,获得10
34秒前
852应助动听的蛟凤采纳,获得10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670705
求助须知:如何正确求助?哪些是违规求助? 3227648
关于积分的说明 9776557
捐赠科研通 2937823
什么是DOI,文献DOI怎么找? 1609637
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735874