A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition

手势 可穿戴计算机 手势识别 计算机科学 人工智能 肌电图 可穿戴技术 计算机视觉 人机交互 语音识别 嵌入式系统 物理医学与康复 医学
作者
Ali Moin,Andy Zhou,Abbas Rahimi,Alisha Menon,Simone Benatti,George Alexandrov,Senam Tamakloe,Jonathan Ting,Natasha A. D. Yamamoto,Yasser Khan,Fred Burghardt,Luca Benini,Ana Claudia Arias,Jan M. Rabaey
出处
期刊:Nature electronics [Springer Nature]
卷期号:4 (1): 54-63 被引量:586
标识
DOI:10.1038/s41928-020-00510-8
摘要

Wearable devices that monitor muscle activity based on surface electromyography could be of use in the development of hand gesture recognition applications. Such devices typically use machine-learning models, either locally or externally, for gesture classification. However, most devices with local processing cannot offer training and updating of the machine-learning model during use, resulting in suboptimal performance under practical conditions. Here we report a wearable surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities. Our system implements a neuro-inspired hyperdimensional computing algorithm locally for real-time gesture classification, as well as model training and updating under variable conditions such as different arm positions and sensor replacement. The system can classify 13 hand gestures with 97.12% accuracy for two participants when training with a single trial per gesture. A high accuracy (92.87%) is preserved on expanding to 21 gestures, and accuracy is recovered by 9.5% by implementing model updates in response to varying conditions, without additional computation on an external device. A surface electromyography biosensing system that is based on a screen-printed, conformal electrode array and has in-sensor adaptive learning capabilities can classify human gestures in real time and with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
书羽完成签到,获得积分10
1秒前
1秒前
科研通AI6应助peach采纳,获得10
2秒前
苹果初阳发布了新的文献求助10
2秒前
丘比特应助zhen采纳,获得10
2秒前
2秒前
虚心的芝麻完成签到,获得积分10
3秒前
禾苗完成签到,获得积分10
3秒前
彪壮的面包完成签到,获得积分10
3秒前
何求发布了新的文献求助10
3秒前
3秒前
小蘑菇应助研友_Z3vN0n采纳,获得80
4秒前
dj发布了新的文献求助10
4秒前
4秒前
Aom发布了新的文献求助10
4秒前
Zx_1993应助加勒比海带采纳,获得10
4秒前
5秒前
zila完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
咸鱼发布了新的文献求助10
5秒前
哈哈哈大赞完成签到,获得积分10
6秒前
YWJ发布了新的文献求助10
6秒前
6秒前
张一亦可完成签到,获得积分10
6秒前
6秒前
鲁鱼完成签到,获得积分10
6秒前
NingZH发布了新的文献求助10
6秒前
王杰秀发布了新的文献求助10
6秒前
7秒前
灵巧山菡完成签到,获得积分10
7秒前
7秒前
CuCu发布了新的文献求助10
7秒前
默默善愁发布了新的文献求助10
8秒前
mojojo发布了新的文献求助10
8秒前
木木发布了新的文献求助10
8秒前
晓晖完成签到,获得积分10
8秒前
copper发布了新的文献求助10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879