Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking

人工智能 果园 班级(哲学) 模式识别(心理学) 计算机科学 学习迁移 领域(数学) 机器人 深度学习 目标检测 机器人学 计算机视觉 数学 园艺 生物 纯数学
作者
Rui Suo,Feng Gao,Zhongxian Zhou,Longsheng Fu,Zhenzhen Song,Jaspreet Singh Dhupia,Rui Li,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:182: 106052-106052 被引量:59
标识
DOI:10.1016/j.compag.2021.106052
摘要

Deep learning has achieved kiwifruit detection with high accuracy and fast speed. However, all the kiwifruits have been labeled and detected as only one class in most researches for robotic fruit picking, where fruits occluded by branches or wires have been detected as pickable targets. End-effectors or robots may be damaged by the branches or wires when they are forced to pick those fruits. Therefore, kiwifruits are labeled, trained, and detected in multi-classes based on their occlusions to avoid detecting fruits occluded by branches or wires as pickable targets. Fruits are classified into four classes and five classes according to robotic picking strategy and field occlusions, respectively. Well-known YOLOv3 and recently released YOLOv4 are employed to do transfer learning for multi-classes kiwifruit detection. Results show that mAP (mean average precision) of fruits in the five-classes is higher than that in the four-classes, while mAP of YOLOv4 is higher than YOLOv3. The mAP of YOLOv4 and YOLOv3 in the five-classes and four-classes are 91.9%, 91.5%, 91.1%, and 89.5%, respectively. The results demonstrate that fruits labeled and trained in more classes can achieve higher mAP. There are significant differences in average detection speed in YOLOv3 and YOLOv4, but no in the four-classes and five-classes. Overall, the highest mAP of 91.9% was achieved by YOLOv4 in the five-classes, which cost 25.5 ms on average to process a 2352 × 1568 image. The results illustrate that multi-classes kiwifruit detection is helpful for avoiding damage to the end-effectors or robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助搞怪的流沙采纳,获得10
2秒前
ly完成签到,获得积分10
3秒前
3秒前
3秒前
悲凉的秋荷完成签到,获得积分20
4秒前
4秒前
英俊的铭应助爱德华兹俊采纳,获得10
5秒前
整齐凌萱发布了新的文献求助10
8秒前
8秒前
思源应助务实的映菡采纳,获得10
12秒前
13秒前
13秒前
15秒前
惜墨应助Suzzne采纳,获得10
15秒前
15秒前
炒栗子完成签到,获得积分20
16秒前
17秒前
炒栗子发布了新的文献求助80
21秒前
郑雨霏发布了新的文献求助10
21秒前
21秒前
22秒前
疯狂的含羞草完成签到,获得积分10
23秒前
24秒前
Cola完成签到,获得积分10
24秒前
11发布了新的文献求助10
25秒前
25秒前
27秒前
可爱的函函应助务实的宛采纳,获得10
27秒前
郑雨霏完成签到,获得积分10
27秒前
李剑鸿发布了新的文献求助50
29秒前
细心的抽屉完成签到,获得积分20
29秒前
SciGPT应助摆渡人采纳,获得10
29秒前
30秒前
粗犷的秋凌完成签到 ,获得积分10
32秒前
34秒前
34秒前
情怀应助炒栗子采纳,获得10
35秒前
CipherSage应助受伤的老头采纳,获得10
35秒前
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102