亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Scale Combination Selection Integrating Three-Way Decision With Hasse Diagram

比例(比率) 边界(拓扑) 不相交集 空格(标点符号) 还原(数学) 选择(遗传算法) 影响图 数学 数学优化 计算机科学 人工智能 决策树 离散数学 地理 数学分析 几何学 地图学 操作系统
作者
Qinghua Zhang,Yunlong Cheng,Fan Zhao,Guoyin Wang,Shuyin Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3675-3689 被引量:53
标识
DOI:10.1109/tnnls.2021.3054063
摘要

Multi-scale decision system (MDS) is an effective tool to describe hierarchical data in machine learning. Optimal scale combination (OSC) selection and attribute reduction are two key issues related to knowledge discovery in MDSs. However, searching for all OSCs may result in a combinatorial explosion, and the existing approaches typically incur excessive time consumption. In this study, searching for all OSCs is considered as an optimization problem with the scale space as the search space. Accordingly, a sequential three-way decision model of the scale space is established to reduce the search space by integrating three-way decision with the Hasse diagram. First, a novel scale combination is proposed to perform scale selection and attribute reduction simultaneously, and then an extended stepwise optimal scale selection (ESOSS) method is introduced to quickly search for a single local OSC on a subset of the scale space. Second, based on the obtained local OSCs, a sequential three-way decision model of the scale space is established to divide the search space into three pair-wise disjoint regions, namely the positive, negative, and boundary regions. The boundary region is regarded as a new search space, and it can be proved that a local OSC on the boundary region is also a global OSC. Therefore, all OSCs of a given MDS can be obtained by searching for the local OSCs on the boundary regions in a step-by-step manner. Finally, according to the properties of the Hasse diagram, a formula for calculating the maximal elements of a given boundary region is provided to alleviate space complexity. Accordingly, an efficient OSC selection algorithm is proposed to improve the efficiency of searching for all OSCs by reducing the search space. The experimental results demonstrate that the proposed method can significantly reduce computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
shuikoubl发布了新的文献求助10
14秒前
17秒前
17秒前
藤椒辣鱼应助科研通管家采纳,获得10
25秒前
藤椒辣鱼应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
40秒前
物语完成签到,获得积分10
43秒前
46秒前
物语发布了新的文献求助10
47秒前
帅帅的duyang完成签到 ,获得积分10
51秒前
Yuzuruyan发布了新的文献求助10
53秒前
1分钟前
DDQ完成签到,获得积分10
1分钟前
CodeCraft应助DDQ采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
记录者完成签到 ,获得积分10
2分钟前
lpcxly发布了新的文献求助30
3分钟前
3分钟前
KK发布了新的文献求助10
3分钟前
Mong那粒沙完成签到,获得积分10
3分钟前
lpcxly发布了新的文献求助10
3分钟前
MchemG完成签到,获得积分0
3分钟前
3分钟前
lpcxly发布了新的文献求助10
4分钟前
4分钟前
DDQ发布了新的文献求助10
4分钟前
lpcxly发布了新的文献求助10
4分钟前
lpcxly发布了新的文献求助10
5分钟前
佟蓝血发布了新的文献求助30
5分钟前
lpcxly发布了新的文献求助10
5分钟前
zxcsdfa应助xiaodong采纳,获得100
6分钟前
藤椒辣鱼应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
lpcxly发布了新的文献求助10
7分钟前
7分钟前
1437594843完成签到 ,获得积分10
7分钟前
lpcxly发布了新的文献求助10
7分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055200
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936