清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Novel Computed-Tomography Enterography Radiomic Approach for Characterization of Intestinal Fibrosis in Crohn’s Disease

医学 接收机工作特性 队列 逻辑回归 置信区间 回顾性队列研究 曲线下面积 克罗恩病 放射科 胃肠病学 内科学 疾病
作者
Xuehua Li,Liang Dong,Jixin Meng,Jie Zhou,Chen Zhao,Shu‐Chun Huang,Baolan Lu,Yun Qiu,Mark E. Baker,Ziyin Ye,Qinghua Cao,Mingyu Wang,Chenglang Yuan,Zhihui Chen,Shengyu Feng,Yuxuan Zhang,Marietta Iacucci,Subrata Ghosh,Florian Rieder,Canhui Sun,Minhu Chen,Ziping Li,Ren Mao,Bingsheng Huang,Shi Feng
出处
期刊:Gastroenterology [Elsevier]
卷期号:160 (7): 2303-2316.e11 被引量:47
标识
DOI:10.1053/j.gastro.2021.02.027
摘要

Background & Aims No reliable method for evaluating intestinal fibrosis in Crohn’s disease (CD) exists; therefore, we developed a computed-tomography enterography (CTE)–based radiomic model (RM) for characterizing intestinal fibrosis in CD. Methods This retrospective multicenter study included 167 CD patients with 212 bowel lesions (training, 98 lesions; test, 114 lesions) who underwent preoperative CTE and bowel resection at 1 of the 3 tertiary referral centers from January 2014 through June 2020. Bowel fibrosis was histologically classified as none–mild or moderate–severe. In the training cohort, 1454 radiomic features were extracted from venous-phase CTE and a machine learning–based RM was developed based on the reproducible features using logistic regression. The RM was validated in an independent external test cohort recruited from 3 centers. The diagnostic performance of RM was compared with 2 radiologists’ visual interpretation of CTE using receiver operating characteristic (ROC) curve analysis. Results In the training cohort, the area under the ROC curve (AUC) of RM for distinguishing moderate–severe from none–mild intestinal fibrosis was 0.888 (95% confidence interval [CI], 0.818–0.957). In the test cohort, the RM showed robust performance across 3 centers with an AUC of 0.816 (95% CI, 0.706–0.926), 0.724 (95% CI, 0.526–0.923), and 0.750 (95% CI, 0.560–0.940), respectively. Moreover, the RM was more accurate than visual interpretations by either radiologist (radiologist 1, AUC = 0.554; radiologist 2, AUC = 0.598; both, P < .001) in the test cohort. Decision curve analysis showed that the RM provided a better net benefit to predicting intestinal fibrosis than the radiologists. Conclusions A CTE-based RM allows for accurate characterization of intestinal fibrosis in CD. No reliable method for evaluating intestinal fibrosis in Crohn’s disease (CD) exists; therefore, we developed a computed-tomography enterography (CTE)–based radiomic model (RM) for characterizing intestinal fibrosis in CD. This retrospective multicenter study included 167 CD patients with 212 bowel lesions (training, 98 lesions; test, 114 lesions) who underwent preoperative CTE and bowel resection at 1 of the 3 tertiary referral centers from January 2014 through June 2020. Bowel fibrosis was histologically classified as none–mild or moderate–severe. In the training cohort, 1454 radiomic features were extracted from venous-phase CTE and a machine learning–based RM was developed based on the reproducible features using logistic regression. The RM was validated in an independent external test cohort recruited from 3 centers. The diagnostic performance of RM was compared with 2 radiologists’ visual interpretation of CTE using receiver operating characteristic (ROC) curve analysis. In the training cohort, the area under the ROC curve (AUC) of RM for distinguishing moderate–severe from none–mild intestinal fibrosis was 0.888 (95% confidence interval [CI], 0.818–0.957). In the test cohort, the RM showed robust performance across 3 centers with an AUC of 0.816 (95% CI, 0.706–0.926), 0.724 (95% CI, 0.526–0.923), and 0.750 (95% CI, 0.560–0.940), respectively. Moreover, the RM was more accurate than visual interpretations by either radiologist (radiologist 1, AUC = 0.554; radiologist 2, AUC = 0.598; both, P < .001) in the test cohort. Decision curve analysis showed that the RM provided a better net benefit to predicting intestinal fibrosis than the radiologists. A CTE-based RM allows for accurate characterization of intestinal fibrosis in CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金钰贝儿发布了新的文献求助10
30秒前
金钰贝儿完成签到,获得积分10
40秒前
紫荆完成签到 ,获得积分10
46秒前
凶狠的盛男完成签到 ,获得积分10
1分钟前
zly完成签到 ,获得积分10
1分钟前
灰灰完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
智智完成签到 ,获得积分10
2分钟前
枝枝复之之完成签到 ,获得积分10
2分钟前
46464发布了新的文献求助10
3分钟前
46464发布了新的文献求助10
4分钟前
大大大娇搞科研完成签到 ,获得积分10
4分钟前
Rainy完成签到 ,获得积分10
4分钟前
ZZ完成签到,获得积分10
4分钟前
46464发布了新的文献求助10
4分钟前
5分钟前
ZZ发布了新的文献求助10
5分钟前
Eri_SCI完成签到 ,获得积分10
5分钟前
Bazinga完成签到,获得积分10
7分钟前
顾矜应助lin.xy采纳,获得10
7分钟前
9分钟前
lin.xy发布了新的文献求助10
9分钟前
lin.xy完成签到,获得积分10
9分钟前
xaopng完成签到,获得积分10
10分钟前
10分钟前
kryzhang发布了新的文献求助10
10分钟前
tingyeh完成签到,获得积分10
11分钟前
宇文傲龙完成签到 ,获得积分10
12分钟前
Eatanicecube完成签到,获得积分10
12分钟前
Richard完成签到 ,获得积分10
13分钟前
爱听歌的书雁完成签到,获得积分10
15分钟前
木子倪发布了新的文献求助30
16分钟前
17分钟前
木子倪发布了新的文献求助30
17分钟前
Owen应助科研通管家采纳,获得10
18分钟前
糊涂的青烟完成签到 ,获得积分10
19分钟前
vitamin完成签到 ,获得积分10
19分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3063160
求助须知:如何正确求助?哪些是违规求助? 2717940
关于积分的说明 7456727
捐赠科研通 2364292
什么是DOI,文献DOI怎么找? 1253382
科研通“疑难数据库(出版商)”最低求助积分说明 608564
版权声明 596606