Perpendicularly anchored ReSe2 nanoflakes on reduced graphene oxide support for highly efficient hydrogen evolution reactions

氧化物 化学工程 催化作用 碳纤维
作者
Yaping Yan,Shiyu Xu,Hao Li,N. Clament Sagaya Selvam,Jin Yong Lee,Hoo-Jeong Lee,Pil J. Yoo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:405: 126728- 被引量:6
标识
DOI:10.1016/j.cej.2020.126728
摘要

Abstract Hydrogen evolution reaction (HER) by water splitting has made a significant contribution to producing large amounts of hydrogen gas as the next generation fuel. Development of highly efficient, economically viable, and electrochemically stable HER electrocatalysts has accordingly become a prerequisite for practical implementation of large scale water electrolysis. Mono/few-layered transition metal dichalcogenide (TMD) based HER-electrocatalysts have recently garnered great interest due to their diverse tunable electrochemical properties. However, they still face intrinsic limitations such as self-aggregation, rare active sites, high electrical resistance, and long-term electrochemical instability. To tackle these challenges, we designed and synthesized a novel electrocatalyst comprising active site-rich rhenium diselenide (ReSe2) nanoflakes perpendicularly anchored on a reduced graphene oxide (rGO) nanosheet support via a facile one-step hydrothermal synthesis. The rGO support provides a growing platform for few-layered ReSe2 nanoflakes while facilitating plentiful exposure of edge/corner sites of ReSe2, highly desirable for maximizing the catalytic activity of ReSe2@rGO. The synthesized ReSe2@rGO exhibits a low overpotential of 145.3 mV at a current density of 10 mA·cm−2 with a Tafel slope of 40.7 mV·dec−1 for the HER process due to the synergistic combination of high surface density of unsaturated coordination sites, remarkably accelerated electron transfer, and enhanced electrochemical stability. This outcome suggests using structurally regulated hybridization of TMDs and graphene as a platform toolkit for developing high performance HER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clover04完成签到,获得积分10
刚刚
柔弱的科研废物完成签到,获得积分10
1秒前
Zhengyiwu完成签到,获得积分10
1秒前
叽里呱啦完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
qx发布了新的文献求助10
3秒前
big ben完成签到 ,获得积分10
4秒前
pophoo完成签到,获得积分10
4秒前
小北完成签到,获得积分10
5秒前
Laputa完成签到,获得积分10
6秒前
月光族完成签到,获得积分10
6秒前
faye完成签到,获得积分10
7秒前
任性的皮卡丘完成签到 ,获得积分10
8秒前
明理夏槐发布了新的文献求助10
8秒前
王正浩完成签到 ,获得积分10
9秒前
天马行空完成签到,获得积分10
10秒前
just完成签到,获得积分10
10秒前
锦秋完成签到 ,获得积分10
11秒前
qingxinhuo完成签到 ,获得积分10
11秒前
shuqi完成签到 ,获得积分10
12秒前
刘zx完成签到,获得积分10
13秒前
隐形芯完成签到 ,获得积分10
13秒前
张真狗完成签到,获得积分10
14秒前
15秒前
喜悦松完成签到,获得积分10
17秒前
娟娟完成签到 ,获得积分10
17秒前
plumcute完成签到,获得积分10
18秒前
手术刀完成签到 ,获得积分10
18秒前
18秒前
吨吨完成签到,获得积分10
19秒前
沫荔完成签到 ,获得积分10
19秒前
21秒前
来日方长应助张真狗采纳,获得10
22秒前
Tianju完成签到,获得积分10
22秒前
qx发布了新的文献求助10
22秒前
苏芳完成签到,获得积分10
23秒前
135完成签到 ,获得积分10
23秒前
23秒前
松鼠15111完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027