Temperature dependence on tensile deformation mechanisms in a novel Nickel-based single crystal superalloy

材料科学 高温合金 剪切(物理) 微观结构 极限抗拉强度 位错 材料的强化机理 冶金 变形机理 合金 单晶 延展性(地球科学) 复合材料 打滑(空气动力学) 结晶学 蠕动 热力学 化学 物理
作者
Zihao Tan,X.G. Wang,Yunling Du,Tao-Tao Duan,Yanhong Yang,J.L. Liu,Jide Liu,Lin Yang,Jinguo Li,Y. Zhou,Xiaojuan Sun
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:776: 138997-138997 被引量:71
标识
DOI:10.1016/j.msea.2020.138997
摘要

The affordability has become a key element in the development of the modern aero-engines thus the design and research of low-cost single crystal superalloys are in great demand. A kind of novel Nickel-based single crystal superalloy with cost reduction was designed in this work and the temperature dependence on the microstructure modification as well as corresponding deformation mechanisms during tensile tests were systematically investigated. The experimental alloy exhibited a remarkable yield strength of 912 MPa but relatively poor ductility at 760 °C. At higher temperatures, an overt strain softening occurred before the tensile rupture and the fracture features were identified as dimples induced by the accumulated micro-pores. The stacking faults shearing mechanism prevailed at room temperature and there presented two types of stacking faults in the γ′ precipitates. Both decomposition and cross-slip of the a/2 <101> superdislocation were observed at 760 °C while the deformation mechanism was controlled by APB-coupled dislocation pairs shearing the γ′ phase at 980 °C. With temperature increasing to 1100 °C and 1120 °C, the amount of shearing dislocation pairs decreased dramatically, besides, the interfacial dislocation networks and rafted γ/γ′ structures were formed. The degradation of mechanical properties was considerably slight from 1100 °C to 1120 °C, however, three primary microstructure modifications were emphasized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助勇敢的心采纳,获得10
1秒前
1秒前
任某人发布了新的文献求助10
1秒前
2秒前
李健的粉丝团团长应助reai采纳,获得10
2秒前
2秒前
李健应助纯真的德地采纳,获得10
2秒前
2秒前
Gouo完成签到 ,获得积分10
3秒前
3秒前
4秒前
柔弱思卉完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
大方的芸发布了新的文献求助10
5秒前
MonicaR完成签到,获得积分10
6秒前
6秒前
粗心的墨镜完成签到,获得积分10
7秒前
7秒前
Maestro_S发布了新的文献求助10
8秒前
wwwq发布了新的文献求助10
8秒前
liuying发布了新的文献求助10
8秒前
XinChenLee发布了新的文献求助10
8秒前
8秒前
ZZ完成签到 ,获得积分10
9秒前
hokin33发布了新的文献求助30
9秒前
jyk完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
一期一会发布了新的文献求助30
12秒前
英俊皮卡丘完成签到,获得积分10
12秒前
NexusExplorer应助芋头采纳,获得10
13秒前
任某人完成签到,获得积分10
14秒前
小叶同学完成签到,获得积分10
14秒前
勇敢的心发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300