Variable-Size Cooperative Coevolutionary Particle Swarm Optimization for Feature Selection on High-Dimensional Data

粒子群优化 特征选择 计算机科学 数学优化 进化计算 选择(遗传算法) 人工智能 变量(数学) 模式识别(心理学) 特征(语言学) 数学 算法 语言学 数学分析 哲学
作者
Xianfang Song,Zhang Yon,Yinan Guo,Xiaoyan Sun,Yongli Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 882-895 被引量:287
标识
DOI:10.1109/tevc.2020.2968743
摘要

Evolutionary feature selection (FS) methods face the challenge of "curse of dimensionality" when dealing with high-dimensional data. Focusing on this challenge, this article studies a variable-size cooperative coevolutionary particle swarm optimization algorithm (VS-CCPSO) for FS. The proposed algorithm employs the idea of "divide and conquer" in cooperative coevolutionary approach, but several new developed problem-guided operators/strategies make it more suitable for FS problems. First, a space division strategy based on the feature importance is presented, which can classify relevant features into the same subspace with a low computational cost. Following that, an adaptive adjustment mechanism of subswarm size is developed to maintain an appropriate size for each subswarm, with the purpose of saving computational cost on evaluating particles. Moreover, a particle deletion strategy based on fitness-guided binary clustering, and a particle generation strategy based on feature importance and crossover both are designed to ensure the quality of particles in the subswarms. We apply VS-CCPSO to 12 typical datasets and compare it with six state-of-the-art methods. The experimental results show that VS-CCPSO has the capability of obtaining good feature subsets, suggesting its competitiveness for tackling FS problems with high dimensionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
讨厌所有人完成签到,获得积分10
1秒前
诸葛烤鸭完成签到,获得积分10
1秒前
追梦1998完成签到,获得积分10
1秒前
灯箱发布了新的文献求助10
1秒前
星辰大海应助专注钢笔采纳,获得10
1秒前
kol完成签到,获得积分10
1秒前
科研废柴完成签到,获得积分10
1秒前
橙神完成签到,获得积分10
1秒前
Qiancheni完成签到,获得积分10
2秒前
小王完成签到,获得积分20
2秒前
MnO2fff完成签到,获得积分10
3秒前
Ava应助飞云采纳,获得10
3秒前
3秒前
4秒前
376应助虚拟的水壶采纳,获得10
4秒前
细心香烟完成签到 ,获得积分10
5秒前
dirk完成签到,获得积分10
6秒前
852应助cyy采纳,获得10
6秒前
悦耳寒松完成签到,获得积分10
6秒前
youyuguang完成签到 ,获得积分10
6秒前
专注钢笔完成签到 ,获得积分10
7秒前
Joy发布了新的文献求助10
7秒前
M先生完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
燕子完成签到,获得积分10
8秒前
PiaoGuo完成签到,获得积分10
10秒前
hkh发布了新的文献求助10
10秒前
Ice_zhao发布了新的文献求助10
10秒前
HuaYu发布了新的文献求助30
11秒前
十五完成签到,获得积分10
11秒前
FashionBoy应助灯箱采纳,获得10
11秒前
小蜜蜂完成签到,获得积分10
12秒前
萱1988完成签到,获得积分10
13秒前
马铃薯完成签到,获得积分10
13秒前
zhaozhao完成签到,获得积分10
14秒前
14秒前
Underwood111完成签到,获得积分10
15秒前
野生的阿撒卡完成签到,获得积分10
15秒前
可爱的梦柏完成签到,获得积分10
15秒前
小詹完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584915
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772176
捐赠科研通 4616359
什么是DOI,文献DOI怎么找? 2530284
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467624