亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variable-Size Cooperative Coevolutionary Particle Swarm Optimization for Feature Selection on High-Dimensional Data

粒子群优化 特征选择 计算机科学 数学优化 进化计算 选择(遗传算法) 人工智能 变量(数学) 模式识别(心理学) 特征(语言学) 数学 算法 语言学 数学分析 哲学
作者
Xianfang Song,Zhang Yon,Yinan Guo,Xiaoyan Sun,Yongli Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 882-895 被引量:287
标识
DOI:10.1109/tevc.2020.2968743
摘要

Evolutionary feature selection (FS) methods face the challenge of "curse of dimensionality" when dealing with high-dimensional data. Focusing on this challenge, this article studies a variable-size cooperative coevolutionary particle swarm optimization algorithm (VS-CCPSO) for FS. The proposed algorithm employs the idea of "divide and conquer" in cooperative coevolutionary approach, but several new developed problem-guided operators/strategies make it more suitable for FS problems. First, a space division strategy based on the feature importance is presented, which can classify relevant features into the same subspace with a low computational cost. Following that, an adaptive adjustment mechanism of subswarm size is developed to maintain an appropriate size for each subswarm, with the purpose of saving computational cost on evaluating particles. Moreover, a particle deletion strategy based on fitness-guided binary clustering, and a particle generation strategy based on feature importance and crossover both are designed to ensure the quality of particles in the subswarms. We apply VS-CCPSO to 12 typical datasets and compare it with six state-of-the-art methods. The experimental results show that VS-CCPSO has the capability of obtaining good feature subsets, suggesting its competitiveness for tackling FS problems with high dimensionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
13秒前
29秒前
31秒前
黄玥发布了新的文献求助10
33秒前
koko19981228应助drtianyunhong采纳,获得50
40秒前
47秒前
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Entropy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ZYB发布了新的文献求助10
2分钟前
2分钟前
ZYB完成签到,获得积分20
2分钟前
知行者完成签到 ,获得积分10
2分钟前
2分钟前
7and7发布了新的文献求助10
2分钟前
2分钟前
3分钟前
星辰大海应助7and7采纳,获得30
3分钟前
Jenny发布了新的文献求助150
3分钟前
7and7完成签到,获得积分10
3分钟前
丘比特应助科研通管家采纳,获得20
3分钟前
小吴完成签到,获得积分10
3分钟前
老年学术废物完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
脆脆鲨完成签到,获得积分10
6分钟前
噜噜大王发布了新的文献求助10
7分钟前
CipherSage应助oddfunction采纳,获得10
7分钟前
瑾木完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568208
求助须知:如何正确求助?哪些是违规求助? 4652699
关于积分的说明 14701943
捐赠科研通 4594540
什么是DOI,文献DOI怎么找? 2521065
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698