Neural Operator: Graph Kernel Network for Partial Differential Equations

欧几里得空间 数学 核(代数) 离散化 偏微分方程 人工神经网络 非线性系统 操作员(生物学) 图形 背景(考古学) 应用数学 计算机科学 域代数上的 离散数学 数学分析 纯数学 人工智能 生物 基因 物理 转录因子 古生物学 抑制因子 量子力学 化学 生物化学
作者
Zongyi Li,Nikola B. Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew M. Stuart,Anima Anandkumar
出处
期刊:Cornell University - arXiv 被引量:130
标识
DOI:10.48550/arxiv.2003.03485
摘要

The classical development of neural networks has been primarily for mappings between a finite-dimensional Euclidean space and a set of classes, or between two finite-dimensional Euclidean spaces. The purpose of this work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators). The key innovation in our work is that a single set of network parameters, within a carefully designed network architecture, may be used to describe mappings between infinite-dimensional spaces and between different finite-dimensional approximations of those spaces. We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators. The kernel integration is computed by message passing on graph networks. This approach has substantial practical consequences which we will illustrate in the context of mappings between input data to partial differential equations (PDEs) and their solutions. In this context, such learned networks can generalize among different approximation methods for the PDE (such as finite difference or finite element methods) and among approximations corresponding to different underlying levels of resolution and discretization. Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1122完成签到,获得积分10
1秒前
浅尝离白应助小颖子采纳,获得10
2秒前
dd19930403发布了新的文献求助10
3秒前
4秒前
oysp完成签到,获得积分10
4秒前
Hcollide完成签到 ,获得积分10
4秒前
8秒前
罗又柔应助醉熏的盼曼采纳,获得10
10秒前
灵巧妙芙完成签到,获得积分10
10秒前
科研小菜完成签到 ,获得积分10
12秒前
思源应助Hcollide采纳,获得10
14秒前
咕噜完成签到,获得积分10
14秒前
研友_Zlepz8发布了新的文献求助30
16秒前
研友_ZAVbe8应助dd19930403采纳,获得30
17秒前
yecheng完成签到,获得积分10
18秒前
麻瓜完成签到,获得积分10
19秒前
Lucas应助YUN采纳,获得10
20秒前
沉默念蕾发布了新的文献求助10
21秒前
含蓄的白安完成签到,获得积分10
22秒前
田様应助漂亮的灯泡采纳,获得10
24秒前
24秒前
豫章小菜花完成签到,获得积分10
24秒前
26秒前
Iron_five完成签到 ,获得积分10
28秒前
脑洞疼应助豫章小菜花采纳,获得10
28秒前
29秒前
Singularity应助vv采纳,获得10
29秒前
Rqbnicsp完成签到,获得积分10
31秒前
32秒前
32秒前
35秒前
38秒前
Hunter发布了新的文献求助10
38秒前
41秒前
Singularity应助vv采纳,获得10
41秒前
42秒前
不配.应助沉默念蕾采纳,获得10
43秒前
45秒前
46秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079