亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applications of Deep Learning in Molecule Generation and Molecular Property Prediction

财产(哲学) 分子 计算机科学 化学 纳米技术 材料科学 有机化学 哲学 认识论
作者
W. Patrick Walters,Regina Barzilay
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (2): 263-270 被引量:264
标识
DOI:10.1021/acs.accounts.0c00699
摘要

ConspectusRecent advances in computer hardware and software have led to a revolution in deep neural networks that has impacted fields ranging from language translation to computer vision. Deep learning has also impacted a number of areas in drug discovery, including the analysis of cellular images and the design of novel routes for the synthesis of organic molecules. While work in these areas has been impactful, a complete review of the applications of deep learning in drug discovery would be beyond the scope of a single Account. In this Account, we will focus on two key areas where deep learning has impacted molecular design: the prediction of molecular properties and the de novo generation of suggestions for new molecules.One of the most significant advances in the development of quantitative structure–activity relationships (QSARs) has come from the application of deep learning methods to the prediction of the biological activity and physical properties of molecules in drug discovery programs. Rather than employing the expert-derived chemical features typically used to build predictive models, researchers are now using deep learning to develop novel molecular representations. These representations, coupled with the ability of deep neural networks to uncover complex, nonlinear relationships, have led to state-of-the-art performance. While deep learning has changed the way that many researchers approach QSARs, it is not a panacea. As with any other machine learning task, the design of predictive models is dependent on the quality, quantity, and relevance of available data. Seemingly fundamental issues, such as optimal methods for creating a training set, are still open questions for the field. Another critical area that is still the subject of multiple research efforts is the development of methods for assessing the confidence in a model.Deep learning has also contributed to a renaissance in the application of de novo molecule generation. Rather than relying on manually defined heuristics, deep learning methods learn to generate new molecules based on sets of existing molecules. Techniques that were originally developed for areas such as image generation and language translation have been adapted to the generation of molecules. These deep learning methods have been coupled with the predictive models described above and are being used to generate new molecules with specific predicted biological activity profiles. While these generative algorithms appear promising, there have been only a few reports on the synthesis and testing of molecules based on designs proposed by generative models. The evaluation of the diversity, quality, and ultimate value of molecules produced by generative models is still an open question. While the field has produced a number of benchmarks, it has yet to agree on how one should ultimately assess molecules "invented" by an algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的香菇完成签到 ,获得积分10
3秒前
7秒前
dovejingling完成签到,获得积分10
10秒前
lulu发布了新的文献求助20
13秒前
Jasper应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
21秒前
李沐唅完成签到 ,获得积分10
25秒前
核桃发布了新的文献求助30
31秒前
32秒前
阿凯完成签到 ,获得积分10
37秒前
zzx发布了新的文献求助10
38秒前
zzx完成签到,获得积分10
44秒前
小泉完成签到 ,获得积分10
49秒前
星辰大海应助高兴的忆曼采纳,获得10
1分钟前
英姑应助核桃采纳,获得10
2分钟前
科研通AI5应助核桃采纳,获得10
2分钟前
科研通AI5应助核桃采纳,获得10
2分钟前
可爱的函函应助核桃采纳,获得10
2分钟前
Liufgui应助核桃采纳,获得10
2分钟前
在水一方应助核桃采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
LONG完成签到 ,获得积分10
2分钟前
秋风今是完成签到 ,获得积分10
2分钟前
2分钟前
核桃发布了新的文献求助10
2分钟前
biubiubiu驳回了852应助
3分钟前
AUGKING27完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
无语的诗柳完成签到 ,获得积分10
3分钟前
nina完成签到 ,获得积分10
3分钟前
远山淡影_cy完成签到,获得积分20
3分钟前
康谨完成签到 ,获得积分10
4分钟前
blenx完成签到,获得积分10
4分钟前
4分钟前
小叶子完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256334
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228