Applications of Deep Learning in Molecule Generation and Molecular Property Prediction

财产(哲学) 分子 计算机科学 化学 纳米技术 材料科学 有机化学 哲学 认识论
作者
W. Patrick Walters,Regina Barzilay
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (2): 263-270 被引量:209
标识
DOI:10.1021/acs.accounts.0c00699
摘要

ConspectusRecent advances in computer hardware and software have led to a revolution in deep neural networks that has impacted fields ranging from language translation to computer vision. Deep learning has also impacted a number of areas in drug discovery, including the analysis of cellular images and the design of novel routes for the synthesis of organic molecules. While work in these areas has been impactful, a complete review of the applications of deep learning in drug discovery would be beyond the scope of a single Account. In this Account, we will focus on two key areas where deep learning has impacted molecular design: the prediction of molecular properties and the de novo generation of suggestions for new molecules.One of the most significant advances in the development of quantitative structure–activity relationships (QSARs) has come from the application of deep learning methods to the prediction of the biological activity and physical properties of molecules in drug discovery programs. Rather than employing the expert-derived chemical features typically used to build predictive models, researchers are now using deep learning to develop novel molecular representations. These representations, coupled with the ability of deep neural networks to uncover complex, nonlinear relationships, have led to state-of-the-art performance. While deep learning has changed the way that many researchers approach QSARs, it is not a panacea. As with any other machine learning task, the design of predictive models is dependent on the quality, quantity, and relevance of available data. Seemingly fundamental issues, such as optimal methods for creating a training set, are still open questions for the field. Another critical area that is still the subject of multiple research efforts is the development of methods for assessing the confidence in a model.Deep learning has also contributed to a renaissance in the application of de novo molecule generation. Rather than relying on manually defined heuristics, deep learning methods learn to generate new molecules based on sets of existing molecules. Techniques that were originally developed for areas such as image generation and language translation have been adapted to the generation of molecules. These deep learning methods have been coupled with the predictive models described above and are being used to generate new molecules with specific predicted biological activity profiles. While these generative algorithms appear promising, there have been only a few reports on the synthesis and testing of molecules based on designs proposed by generative models. The evaluation of the diversity, quality, and ultimate value of molecules produced by generative models is still an open question. While the field has produced a number of benchmarks, it has yet to agree on how one should ultimately assess molecules "invented" by an algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
稳重的秋天完成签到,获得积分10
2秒前
changfox完成签到,获得积分10
4秒前
勤恳依霜发布了新的文献求助10
6秒前
Fei发布了新的文献求助30
6秒前
优雅的千雁完成签到,获得积分10
7秒前
cjq完成签到,获得积分10
9秒前
轻松的孤云完成签到,获得积分10
12秒前
NexusExplorer应助勤恳依霜采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
16秒前
黑猫小苍完成签到,获得积分10
17秒前
林谷雨完成签到 ,获得积分10
23秒前
进退须臾完成签到,获得积分10
24秒前
儒雅涵易完成签到 ,获得积分10
24秒前
25秒前
ccl完成签到,获得积分10
26秒前
fwz完成签到,获得积分10
27秒前
28秒前
尼可刹米洛贝林完成签到,获得积分10
28秒前
Fei发布了新的文献求助30
30秒前
Oct完成签到 ,获得积分10
32秒前
青羽落霞完成签到 ,获得积分10
33秒前
37秒前
酷炫大白完成签到,获得积分10
39秒前
TT完成签到 ,获得积分10
47秒前
贾舒涵完成签到,获得积分10
51秒前
53秒前
故意的易梦完成签到 ,获得积分10
54秒前
55秒前
雪山飞龙完成签到,获得积分10
56秒前
枫林摇曳完成签到 ,获得积分10
1分钟前
Fei发布了新的文献求助30
1分钟前
成就的笑南完成签到 ,获得积分10
1分钟前
正直夜安完成签到 ,获得积分10
1分钟前
伍秋望完成签到 ,获得积分10
1分钟前
1分钟前
可可完成签到,获得积分10
1分钟前
闻屿完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Regression-Based Normative Data for Psychological Assessment 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751281
关于积分的说明 7612331
捐赠科研通 2403098
什么是DOI,文献DOI怎么找? 1275171
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053