Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization

子空间拓扑 正规化(语言学) 威尔科克森符号秩检验 对比度(视觉) 图像质量 计算机科学 人工智能 数学 模式识别(心理学) 算法 图像(数学) 统计 曼惠特尼U检验
作者
Sagar Mandava,Mahesh Keerthivasan,Diego R. Martín,María I. Altbach,Ali Bilgin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (4): 04NT03-04NT03 被引量:2
标识
DOI:10.1088/1361-6560/abd4b8
摘要

Abstract Subspace-constrained reconstruction methods restrict the relaxation signals (of size M ) in the scene to a pre-determined subspace (of size K ≪ M ) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助爱听歌笑寒采纳,获得10
刚刚
虚幻的冷松完成签到,获得积分10
刚刚
缓慢向日葵完成签到,获得积分10
刚刚
小二郎应助花痴的谷雪采纳,获得10
1秒前
leo7完成签到,获得积分10
1秒前
tartyang完成签到,获得积分10
1秒前
老实半邪完成签到,获得积分10
2秒前
高大万声应助科研人采纳,获得10
2秒前
子安发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
edge发布了新的文献求助10
3秒前
Maestro_S发布了新的文献求助10
4秒前
nasa发布了新的文献求助30
4秒前
6秒前
7秒前
9秒前
10秒前
d123456发布了新的文献求助30
10秒前
万能图书馆应助孙大圣采纳,获得10
11秒前
11秒前
11秒前
2220190143发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
淡淡夕阳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
李健应助多情迎南采纳,获得10
14秒前
15秒前
15秒前
17秒前
qqqq完成签到,获得积分10
18秒前
廖qingliang发布了新的文献求助10
18秒前
lifeng完成签到 ,获得积分10
18秒前
19秒前
争气发布了新的文献求助10
19秒前
飞云发布了新的文献求助10
20秒前
20秒前
20秒前
edge完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002