Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization

子空间拓扑 正规化(语言学) 威尔科克森符号秩检验 对比度(视觉) 图像质量 计算机科学 人工智能 数学 模式识别(心理学) 算法 图像(数学) 统计 曼惠特尼U检验
作者
Sagar Mandava,Mahesh Keerthivasan,Diego R. Martín,María I. Altbach,Ali Bilgin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (4): 04NT03-04NT03 被引量:2
标识
DOI:10.1088/1361-6560/abd4b8
摘要

Abstract Subspace-constrained reconstruction methods restrict the relaxation signals (of size M ) in the scene to a pre-determined subspace (of size K ≪ M ) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助杪123采纳,获得10
刚刚
刚刚
vera完成签到,获得积分10
1秒前
feihua1完成签到 ,获得积分10
1秒前
Weiyuan完成签到,获得积分10
1秒前
隐形曼青应助gilderf采纳,获得10
1秒前
1秒前
踏雪完成签到,获得积分10
3秒前
Jiny完成签到,获得积分10
3秒前
浅色墨水完成签到,获得积分10
3秒前
乐乐发布了新的文献求助10
3秒前
盏盏完成签到 ,获得积分10
3秒前
liutuotuo发布了新的文献求助10
3秒前
3秒前
假发君完成签到,获得积分10
4秒前
clm完成签到 ,获得积分10
4秒前
阿晴完成签到 ,获得积分10
4秒前
congjia完成签到,获得积分10
4秒前
DKY完成签到 ,获得积分10
5秒前
橙子完成签到,获得积分10
5秒前
老实皮皮虾完成签到,获得积分10
5秒前
草履虫完成签到,获得积分10
5秒前
t_mac_shu完成签到,获得积分10
6秒前
Kyrie完成签到,获得积分10
6秒前
风清扬发布了新的文献求助10
6秒前
梨花先雪完成签到,获得积分10
8秒前
8秒前
8秒前
hahaaa发布了新的文献求助10
8秒前
吃肉璇璇完成签到,获得积分10
9秒前
12完成签到,获得积分10
9秒前
SciGPT应助stepha采纳,获得20
10秒前
ShuY完成签到,获得积分10
10秒前
魁梧的蜜蜂完成签到,获得积分10
10秒前
keke完成签到,获得积分10
10秒前
情怀应助koi采纳,获得10
10秒前
杪123完成签到,获得积分10
10秒前
tianxiong完成签到,获得积分10
10秒前
11秒前
james完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856