Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization

子空间拓扑 正规化(语言学) 威尔科克森符号秩检验 对比度(视觉) 图像质量 计算机科学 人工智能 数学 模式识别(心理学) 算法 图像(数学) 统计 曼惠特尼U检验
作者
Sagar Mandava,Mahesh Keerthivasan,Diego R. Martín,María I. Altbach,Ali Bilgin
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (4): 04NT03-04NT03 被引量:2
标识
DOI:10.1088/1361-6560/abd4b8
摘要

Abstract Subspace-constrained reconstruction methods restrict the relaxation signals (of size M ) in the scene to a pre-determined subspace (of size K ≪ M ) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
决明子完成签到 ,获得积分10
1秒前
希望天下0贩的0应助柚子采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
9℃完成签到 ,获得积分10
6秒前
单纯黑米完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助30
7秒前
勤恳洙发布了新的文献求助10
8秒前
祝笑柳完成签到,获得积分10
9秒前
秋qiu完成签到,获得积分10
9秒前
NINI完成签到 ,获得积分10
10秒前
liuzengzhang666完成签到,获得积分10
12秒前
13秒前
小巧的牛排完成签到 ,获得积分10
13秒前
所所应助柚子采纳,获得10
14秒前
14秒前
刘濮源发布了新的文献求助10
14秒前
14秒前
充电宝应助123采纳,获得10
14秒前
lljiaa应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
ylt应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
Maricey应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
所所应助科研通管家采纳,获得10
17秒前
lljiaa应助科研通管家采纳,获得10
17秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
ylt应助科研通管家采纳,获得10
17秒前
17秒前
Lny应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得30
17秒前
Maricey应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Lny应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978